1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
//! Raw executor.
//!
//! This module exposes "raw" Executor and Task structs for more low level control.
//!
//! ## WARNING: here be dragons!
//!
//! Using this module requires respecting subtle safety contracts. If you can, prefer using the safe
//! [executor wrappers](crate::Executor) and the [`embassy_executor::task`](embassy_executor_macros::task) macro, which are fully safe.
#[cfg_attr(target_has_atomic = "ptr", path = "run_queue_atomics.rs")]
#[cfg_attr(not(target_has_atomic = "ptr"), path = "run_queue_critical_section.rs")]
mod run_queue;
#[cfg_attr(all(cortex_m, target_has_atomic = "8"), path = "state_atomics_arm.rs")]
#[cfg_attr(all(not(cortex_m), target_has_atomic = "8"), path = "state_atomics.rs")]
#[cfg_attr(not(target_has_atomic = "8"), path = "state_critical_section.rs")]
mod state;
#[cfg(feature = "integrated-timers")]
mod timer_queue;
pub(crate) mod util;
#[cfg_attr(feature = "turbowakers", path = "waker_turbo.rs")]
mod waker;
use core::future::Future;
use core::marker::PhantomData;
use core::mem;
use core::pin::Pin;
use core::ptr::NonNull;
use core::task::{Context, Poll};
#[cfg(feature = "integrated-timers")]
use embassy_time_driver::{self, AlarmHandle};
#[cfg(feature = "rtos-trace")]
use rtos_trace::trace;
use self::run_queue::{RunQueue, RunQueueItem};
use self::state::State;
use self::util::{SyncUnsafeCell, UninitCell};
pub use self::waker::task_from_waker;
use super::SpawnToken;
/// Raw task header for use in task pointers.
pub(crate) struct TaskHeader {
pub(crate) state: State,
pub(crate) run_queue_item: RunQueueItem,
pub(crate) executor: SyncUnsafeCell<Option<&'static SyncExecutor>>,
poll_fn: SyncUnsafeCell<Option<unsafe fn(TaskRef)>>,
#[cfg(feature = "integrated-timers")]
pub(crate) expires_at: SyncUnsafeCell<u64>,
#[cfg(feature = "integrated-timers")]
pub(crate) timer_queue_item: timer_queue::TimerQueueItem,
}
/// This is essentially a `&'static TaskStorage<F>` where the type of the future has been erased.
#[derive(Clone, Copy)]
pub struct TaskRef {
ptr: NonNull<TaskHeader>,
}
unsafe impl Send for TaskRef where &'static TaskHeader: Send {}
unsafe impl Sync for TaskRef where &'static TaskHeader: Sync {}
impl TaskRef {
fn new<F: Future + 'static>(task: &'static TaskStorage<F>) -> Self {
Self {
ptr: NonNull::from(task).cast(),
}
}
/// Safety: The pointer must have been obtained with `Task::as_ptr`
pub(crate) unsafe fn from_ptr(ptr: *const TaskHeader) -> Self {
Self {
ptr: NonNull::new_unchecked(ptr as *mut TaskHeader),
}
}
pub(crate) fn header(self) -> &'static TaskHeader {
unsafe { self.ptr.as_ref() }
}
/// The returned pointer is valid for the entire TaskStorage.
pub(crate) fn as_ptr(self) -> *const TaskHeader {
self.ptr.as_ptr()
}
}
/// Raw storage in which a task can be spawned.
///
/// This struct holds the necessary memory to spawn one task whose future is `F`.
/// At a given time, the `TaskStorage` may be in spawned or not-spawned state. You
/// may spawn it with [`TaskStorage::spawn()`], which will fail if it is already spawned.
///
/// A `TaskStorage` must live forever, it may not be deallocated even after the task has finished
/// running. Hence the relevant methods require `&'static self`. It may be reused, however.
///
/// Internally, the [embassy_executor::task](embassy_executor_macros::task) macro allocates an array of `TaskStorage`s
/// in a `static`. The most common reason to use the raw `Task` is to have control of where
/// the memory for the task is allocated: on the stack, or on the heap with e.g. `Box::leak`, etc.
// repr(C) is needed to guarantee that the Task is located at offset 0
// This makes it safe to cast between TaskHeader and TaskStorage pointers.
#[repr(C)]
pub struct TaskStorage<F: Future + 'static> {
raw: TaskHeader,
future: UninitCell<F>, // Valid if STATE_SPAWNED
}
impl<F: Future + 'static> TaskStorage<F> {
const NEW: Self = Self::new();
/// Create a new TaskStorage, in not-spawned state.
pub const fn new() -> Self {
Self {
raw: TaskHeader {
state: State::new(),
run_queue_item: RunQueueItem::new(),
executor: SyncUnsafeCell::new(None),
// Note: this is lazily initialized so that a static `TaskStorage` will go in `.bss`
poll_fn: SyncUnsafeCell::new(None),
#[cfg(feature = "integrated-timers")]
expires_at: SyncUnsafeCell::new(0),
#[cfg(feature = "integrated-timers")]
timer_queue_item: timer_queue::TimerQueueItem::new(),
},
future: UninitCell::uninit(),
}
}
/// Try to spawn the task.
///
/// The `future` closure constructs the future. It's only called if spawning is
/// actually possible. It is a closure instead of a simple `future: F` param to ensure
/// the future is constructed in-place, avoiding a temporary copy in the stack thanks to
/// NRVO optimizations.
///
/// This function will fail if the task is already spawned and has not finished running.
/// In this case, the error is delayed: a "poisoned" SpawnToken is returned, which will
/// cause [`Spawner::spawn()`](super::Spawner::spawn) to return the error.
///
/// Once the task has finished running, you may spawn it again. It is allowed to spawn it
/// on a different executor.
pub fn spawn(&'static self, future: impl FnOnce() -> F) -> SpawnToken<impl Sized> {
let task = AvailableTask::claim(self);
match task {
Some(task) => task.initialize(future),
None => SpawnToken::new_failed(),
}
}
unsafe fn poll(p: TaskRef) {
let this = &*(p.as_ptr() as *const TaskStorage<F>);
let future = Pin::new_unchecked(this.future.as_mut());
let waker = waker::from_task(p);
let mut cx = Context::from_waker(&waker);
match future.poll(&mut cx) {
Poll::Ready(_) => {
this.future.drop_in_place();
this.raw.state.despawn();
#[cfg(feature = "integrated-timers")]
this.raw.expires_at.set(u64::MAX);
}
Poll::Pending => {}
}
// the compiler is emitting a virtual call for waker drop, but we know
// it's a noop for our waker.
mem::forget(waker);
}
#[doc(hidden)]
#[allow(dead_code)]
fn _assert_sync(self) {
fn assert_sync<T: Sync>(_: T) {}
assert_sync(self)
}
}
/// An uninitialized [`TaskStorage`].
pub struct AvailableTask<F: Future + 'static> {
task: &'static TaskStorage<F>,
}
impl<F: Future + 'static> AvailableTask<F> {
/// Try to claim a [`TaskStorage`].
///
/// This function returns `None` if a task has already been spawned and has not finished running.
pub fn claim(task: &'static TaskStorage<F>) -> Option<Self> {
task.raw.state.spawn().then(|| Self { task })
}
fn initialize_impl<S>(self, future: impl FnOnce() -> F) -> SpawnToken<S> {
unsafe {
self.task.raw.poll_fn.set(Some(TaskStorage::<F>::poll));
self.task.future.write_in_place(future);
let task = TaskRef::new(self.task);
SpawnToken::new(task)
}
}
/// Initialize the [`TaskStorage`] to run the given future.
pub fn initialize(self, future: impl FnOnce() -> F) -> SpawnToken<F> {
self.initialize_impl::<F>(future)
}
/// Initialize the [`TaskStorage`] to run the given future.
///
/// # Safety
///
/// `future` must be a closure of the form `move || my_async_fn(args)`, where `my_async_fn`
/// is an `async fn`, NOT a hand-written `Future`.
#[doc(hidden)]
pub unsafe fn __initialize_async_fn<FutFn>(self, future: impl FnOnce() -> F) -> SpawnToken<FutFn> {
// When send-spawning a task, we construct the future in this thread, and effectively
// "send" it to the executor thread by enqueuing it in its queue. Therefore, in theory,
// send-spawning should require the future `F` to be `Send`.
//
// The problem is this is more restrictive than needed. Once the future is executing,
// it is never sent to another thread. It is only sent when spawning. It should be
// enough for the task's arguments to be Send. (and in practice it's super easy to
// accidentally make your futures !Send, for example by holding an `Rc` or a `&RefCell` across an `.await`.)
//
// We can do it by sending the task args and constructing the future in the executor thread
// on first poll. However, this cannot be done in-place, so it'll waste stack space for a copy
// of the args.
//
// Luckily, an `async fn` future contains just the args when freshly constructed. So, if the
// args are Send, it's OK to send a !Send future, as long as we do it before first polling it.
//
// (Note: this is how the generators are implemented today, it's not officially guaranteed yet,
// but it's possible it'll be guaranteed in the future. See zulip thread:
// https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async/topic/.22only.20before.20poll.22.20Send.20futures )
//
// The `FutFn` captures all the args, so if it's Send, the task can be send-spawned.
// This is why we return `SpawnToken<FutFn>` below.
//
// This ONLY holds for `async fn` futures. The other `spawn` methods can be called directly
// by the user, with arbitrary hand-implemented futures. This is why these return `SpawnToken<F>`.
self.initialize_impl::<FutFn>(future)
}
}
/// Raw storage that can hold up to N tasks of the same type.
///
/// This is essentially a `[TaskStorage<F>; N]`.
pub struct TaskPool<F: Future + 'static, const N: usize> {
pool: [TaskStorage<F>; N],
}
impl<F: Future + 'static, const N: usize> TaskPool<F, N> {
/// Create a new TaskPool, with all tasks in non-spawned state.
pub const fn new() -> Self {
Self {
pool: [TaskStorage::NEW; N],
}
}
fn spawn_impl<T>(&'static self, future: impl FnOnce() -> F) -> SpawnToken<T> {
match self.pool.iter().find_map(AvailableTask::claim) {
Some(task) => task.initialize_impl::<T>(future),
None => SpawnToken::new_failed(),
}
}
/// Try to spawn a task in the pool.
///
/// See [`TaskStorage::spawn()`] for details.
///
/// This will loop over the pool and spawn the task in the first storage that
/// is currently free. If none is free, a "poisoned" SpawnToken is returned,
/// which will cause [`Spawner::spawn()`](super::Spawner::spawn) to return the error.
pub fn spawn(&'static self, future: impl FnOnce() -> F) -> SpawnToken<impl Sized> {
self.spawn_impl::<F>(future)
}
/// Like spawn(), but allows the task to be send-spawned if the args are Send even if
/// the future is !Send.
///
/// Not covered by semver guarantees. DO NOT call this directly. Intended to be used
/// by the Embassy macros ONLY.
///
/// SAFETY: `future` must be a closure of the form `move || my_async_fn(args)`, where `my_async_fn`
/// is an `async fn`, NOT a hand-written `Future`.
#[doc(hidden)]
pub unsafe fn _spawn_async_fn<FutFn>(&'static self, future: FutFn) -> SpawnToken<impl Sized>
where
FutFn: FnOnce() -> F,
{
// See the comment in AvailableTask::__initialize_async_fn for explanation.
self.spawn_impl::<FutFn>(future)
}
}
#[derive(Clone, Copy)]
pub(crate) struct Pender(*mut ());
unsafe impl Send for Pender {}
unsafe impl Sync for Pender {}
impl Pender {
pub(crate) fn pend(self) {
extern "Rust" {
fn __pender(context: *mut ());
}
unsafe { __pender(self.0) };
}
}
pub(crate) struct SyncExecutor {
run_queue: RunQueue,
pender: Pender,
#[cfg(feature = "integrated-timers")]
pub(crate) timer_queue: timer_queue::TimerQueue,
#[cfg(feature = "integrated-timers")]
alarm: AlarmHandle,
}
impl SyncExecutor {
pub(crate) fn new(pender: Pender) -> Self {
#[cfg(feature = "integrated-timers")]
let alarm = unsafe { unwrap!(embassy_time_driver::allocate_alarm()) };
Self {
run_queue: RunQueue::new(),
pender,
#[cfg(feature = "integrated-timers")]
timer_queue: timer_queue::TimerQueue::new(),
#[cfg(feature = "integrated-timers")]
alarm,
}
}
/// Enqueue a task in the task queue
///
/// # Safety
/// - `task` must be a valid pointer to a spawned task.
/// - `task` must be set up to run in this executor.
/// - `task` must NOT be already enqueued (in this executor or another one).
#[inline(always)]
unsafe fn enqueue(&self, task: TaskRef) {
#[cfg(feature = "rtos-trace")]
trace::task_ready_begin(task.as_ptr() as u32);
if self.run_queue.enqueue(task) {
self.pender.pend();
}
}
#[cfg(feature = "integrated-timers")]
fn alarm_callback(ctx: *mut ()) {
let this: &Self = unsafe { &*(ctx as *const Self) };
this.pender.pend();
}
pub(super) unsafe fn spawn(&'static self, task: TaskRef) {
task.header().executor.set(Some(self));
#[cfg(feature = "rtos-trace")]
trace::task_new(task.as_ptr() as u32);
self.enqueue(task);
}
/// # Safety
///
/// Same as [`Executor::poll`], plus you must only call this on the thread this executor was created.
pub(crate) unsafe fn poll(&'static self) {
#[cfg(feature = "integrated-timers")]
embassy_time_driver::set_alarm_callback(self.alarm, Self::alarm_callback, self as *const _ as *mut ());
#[allow(clippy::never_loop)]
loop {
#[cfg(feature = "integrated-timers")]
self.timer_queue
.dequeue_expired(embassy_time_driver::now(), wake_task_no_pend);
self.run_queue.dequeue_all(|p| {
let task = p.header();
#[cfg(feature = "integrated-timers")]
task.expires_at.set(u64::MAX);
if !task.state.run_dequeue() {
// If task is not running, ignore it. This can happen in the following scenario:
// - Task gets dequeued, poll starts
// - While task is being polled, it gets woken. It gets placed in the queue.
// - Task poll finishes, returning done=true
// - RUNNING bit is cleared, but the task is already in the queue.
return;
}
#[cfg(feature = "rtos-trace")]
trace::task_exec_begin(p.as_ptr() as u32);
// Run the task
task.poll_fn.get().unwrap_unchecked()(p);
#[cfg(feature = "rtos-trace")]
trace::task_exec_end();
// Enqueue or update into timer_queue
#[cfg(feature = "integrated-timers")]
self.timer_queue.update(p);
});
#[cfg(feature = "integrated-timers")]
{
// If this is already in the past, set_alarm might return false
// In that case do another poll loop iteration.
let next_expiration = self.timer_queue.next_expiration();
if embassy_time_driver::set_alarm(self.alarm, next_expiration) {
break;
}
}
#[cfg(not(feature = "integrated-timers"))]
{
break;
}
}
#[cfg(feature = "rtos-trace")]
trace::system_idle();
}
}
/// Raw executor.
///
/// This is the core of the Embassy executor. It is low-level, requiring manual
/// handling of wakeups and task polling. If you can, prefer using one of the
/// [higher level executors](crate::Executor).
///
/// The raw executor leaves it up to you to handle wakeups and scheduling:
///
/// - To get the executor to do work, call `poll()`. This will poll all queued tasks (all tasks
/// that "want to run").
/// - You must supply a pender function, as shown below. The executor will call it to notify you
/// it has work to do. You must arrange for `poll()` to be called as soon as possible.
/// - Enabling `arch-xx` features will define a pender function for you. This means that you
/// are limited to using the executors provided to you by the architecture/platform
/// implementation. If you need a different executor, you must not enable `arch-xx` features.
///
/// The pender can be called from *any* context: any thread, any interrupt priority
/// level, etc. It may be called synchronously from any `Executor` method call as well.
/// You must deal with this correctly.
///
/// In particular, you must NOT call `poll` directly from the pender callback, as this violates
/// the requirement for `poll` to not be called reentrantly.
///
/// The pender function must be exported with the name `__pender` and have the following signature:
///
/// ```rust
/// #[export_name = "__pender"]
/// fn pender(context: *mut ()) {
/// // schedule `poll()` to be called
/// }
/// ```
///
/// The `context` argument is a piece of arbitrary data the executor will pass to the pender.
/// You can set the `context` when calling [`Executor::new()`]. You can use it to, for example,
/// differentiate between executors, or to pass a pointer to a callback that should be called.
#[repr(transparent)]
pub struct Executor {
pub(crate) inner: SyncExecutor,
_not_sync: PhantomData<*mut ()>,
}
impl Executor {
pub(crate) unsafe fn wrap(inner: &SyncExecutor) -> &Self {
mem::transmute(inner)
}
/// Create a new executor.
///
/// When the executor has work to do, it will call the pender function and pass `context` to it.
///
/// See [`Executor`] docs for details on the pender.
pub fn new(context: *mut ()) -> Self {
Self {
inner: SyncExecutor::new(Pender(context)),
_not_sync: PhantomData,
}
}
/// Spawn a task in this executor.
///
/// # Safety
///
/// `task` must be a valid pointer to an initialized but not-already-spawned task.
///
/// It is OK to use `unsafe` to call this from a thread that's not the executor thread.
/// In this case, the task's Future must be Send. This is because this is effectively
/// sending the task to the executor thread.
pub(super) unsafe fn spawn(&'static self, task: TaskRef) {
self.inner.spawn(task)
}
/// Poll all queued tasks in this executor.
///
/// This loops over all tasks that are queued to be polled (i.e. they're
/// freshly spawned or they've been woken). Other tasks are not polled.
///
/// You must call `poll` after receiving a call to the pender. It is OK
/// to call `poll` even when not requested by the pender, but it wastes
/// energy.
///
/// # Safety
///
/// You must NOT call `poll` reentrantly on the same executor.
///
/// In particular, note that `poll` may call the pender synchronously. Therefore, you
/// must NOT directly call `poll()` from the pender callback. Instead, the callback has to
/// somehow schedule for `poll()` to be called later, at a time you know for sure there's
/// no `poll()` already running.
pub unsafe fn poll(&'static self) {
self.inner.poll()
}
/// Get a spawner that spawns tasks in this executor.
///
/// It is OK to call this method multiple times to obtain multiple
/// `Spawner`s. You may also copy `Spawner`s.
pub fn spawner(&'static self) -> super::Spawner {
super::Spawner::new(self)
}
}
/// Wake a task by `TaskRef`.
///
/// You can obtain a `TaskRef` from a `Waker` using [`task_from_waker`].
pub fn wake_task(task: TaskRef) {
let header = task.header();
if header.state.run_enqueue() {
// We have just marked the task as scheduled, so enqueue it.
unsafe {
let executor = header.executor.get().unwrap_unchecked();
executor.enqueue(task);
}
}
}
/// Wake a task by `TaskRef` without calling pend.
///
/// You can obtain a `TaskRef` from a `Waker` using [`task_from_waker`].
pub fn wake_task_no_pend(task: TaskRef) {
let header = task.header();
if header.state.run_enqueue() {
// We have just marked the task as scheduled, so enqueue it.
unsafe {
let executor = header.executor.get().unwrap_unchecked();
executor.run_queue.enqueue(task);
}
}
}
#[cfg(feature = "integrated-timers")]
struct TimerQueue;
#[cfg(feature = "integrated-timers")]
impl embassy_time_queue_driver::TimerQueue for TimerQueue {
fn schedule_wake(&'static self, at: u64, waker: &core::task::Waker) {
let task = waker::task_from_waker(waker);
let task = task.header();
unsafe {
let expires_at = task.expires_at.get();
task.expires_at.set(expires_at.min(at));
}
}
}
#[cfg(feature = "integrated-timers")]
embassy_time_queue_driver::timer_queue_impl!(static TIMER_QUEUE: TimerQueue = TimerQueue);
#[cfg(feature = "rtos-trace")]
impl rtos_trace::RtosTraceOSCallbacks for Executor {
fn task_list() {
// We don't know what tasks exist, so we can't send them.
}
#[cfg(feature = "integrated-timers")]
fn time() -> u64 {
Instant::now().as_micros()
}
#[cfg(not(feature = "integrated-timers"))]
fn time() -> u64 {
0
}
}
#[cfg(feature = "rtos-trace")]
rtos_trace::global_os_callbacks! {Executor}