1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
//! Atomic reusable ringbuffer.
use core::slice;
use core::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
/// Atomic reusable ringbuffer
///
/// This ringbuffer implementation is designed to be stored in a `static`,
/// therefore all methods take `&self` and not `&mut self`.
///
/// It is "reusable": when created it has no backing buffer, you can give it
/// one with `init` and take it back with `deinit`, and init it again in the
/// future if needed. This is very non-idiomatic, but helps a lot when storing
/// it in a `static`.
///
/// One concurrent writer and one concurrent reader are supported, even at
/// different execution priorities (like main and irq).
pub struct RingBuffer {
#[doc(hidden)]
pub buf: AtomicPtr<u8>,
len: AtomicUsize,
// start and end wrap at len*2, not at len.
// This allows distinguishing "full" and "empty".
// full is when start+len == end (modulo len*2)
// empty is when start == end
//
// This avoids having to consider the ringbuffer "full" at len-1 instead of len.
// The usual solution is adding a "full" flag, but that can't be made atomic
#[doc(hidden)]
pub start: AtomicUsize,
#[doc(hidden)]
pub end: AtomicUsize,
}
/// A type which can only read from a ring buffer.
pub struct Reader<'a>(&'a RingBuffer);
/// A type which can only write to a ring buffer.
pub struct Writer<'a>(&'a RingBuffer);
impl RingBuffer {
/// Create a new empty ringbuffer.
pub const fn new() -> Self {
Self {
buf: AtomicPtr::new(core::ptr::null_mut()),
len: AtomicUsize::new(0),
start: AtomicUsize::new(0),
end: AtomicUsize::new(0),
}
}
/// Initialize the ring buffer with a buffer.
///
/// # Safety
/// - The buffer (`buf .. buf+len`) must be valid memory until `deinit` is called.
/// - Must not be called concurrently with any other methods.
pub unsafe fn init(&self, buf: *mut u8, len: usize) {
// Ordering: it's OK to use `Relaxed` because this is not called
// concurrently with other methods.
self.buf.store(buf, Ordering::Relaxed);
self.len.store(len, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
/// Deinitialize the ringbuffer.
///
/// After calling this, the ringbuffer becomes empty, as if it was
/// just created with `new()`.
///
/// # Safety
/// - Must not be called concurrently with any other methods.
pub unsafe fn deinit(&self) {
// Ordering: it's OK to use `Relaxed` because this is not called
// concurrently with other methods.
self.len.store(0, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
/// Create a reader.
///
/// # Safety
///
/// Only one reader can exist at a time.
pub unsafe fn reader(&self) -> Reader<'_> {
Reader(self)
}
/// Create a writer.
///
/// # Safety
///
/// Only one writer can exist at a time.
pub unsafe fn writer(&self) -> Writer<'_> {
Writer(self)
}
/// Return length of buffer.
pub fn len(&self) -> usize {
self.len.load(Ordering::Relaxed)
}
/// Check if buffer is full.
pub fn is_full(&self) -> bool {
let len = self.len.load(Ordering::Relaxed);
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
self.wrap(start + len) == end
}
/// Check if buffer is empty.
pub fn is_empty(&self) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
start == end
}
fn wrap(&self, mut n: usize) -> usize {
let len = self.len.load(Ordering::Relaxed);
if n >= len * 2 {
n -= len * 2
}
n
}
}
impl<'a> Writer<'a> {
/// Push data into the buffer in-place.
///
/// The closure `f` is called with a free part of the buffer, it must write
/// some data to it and return the amount of bytes written.
pub fn push(&mut self, f: impl FnOnce(&mut [u8]) -> usize) -> usize {
let (p, n) = self.push_buf();
let buf = unsafe { slice::from_raw_parts_mut(p, n) };
let n = f(buf);
self.push_done(n);
n
}
/// Push one data byte.
///
/// Returns true if pushed successfully.
pub fn push_one(&mut self, val: u8) -> bool {
let n = self.push(|f| match f {
[] => 0,
[x, ..] => {
*x = val;
1
}
});
n != 0
}
/// Get a buffer where data can be pushed to.
///
/// Equivalent to [`Self::push_buf`] but returns a slice.
pub fn push_slice(&mut self) -> &mut [u8] {
let (data, len) = self.push_buf();
unsafe { slice::from_raw_parts_mut(data, len) }
}
/// Get up to two buffers where data can be pushed to.
///
/// Equivalent to [`Self::push_bufs`] but returns slices.
pub fn push_slices(&mut self) -> [&mut [u8]; 2] {
let [(d0, l0), (d1, l1)] = self.push_bufs();
unsafe { [slice::from_raw_parts_mut(d0, l0), slice::from_raw_parts_mut(d1, l1)] }
}
/// Get a buffer where data can be pushed to.
///
/// Write data to the start of the buffer, then call `push_done` with
/// however many bytes you've pushed.
///
/// The buffer is suitable to DMA to.
///
/// If the ringbuf is full, size=0 will be returned.
///
/// The buffer stays valid as long as no other `Writer` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn push_buf(&mut self) -> (*mut u8, usize) {
// Ordering: popping writes `start` last, so we read `start` first.
// Read it with Acquire ordering, so that the next accesses can't be reordered up past it.
let mut start = self.0.start.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let mut end = self.0.end.load(Ordering::Relaxed);
let empty = start == end;
if start >= len {
start -= len
}
if end >= len {
end -= len
}
if start == end && !empty {
// full
return (buf, 0);
}
let n = if start > end { start - end } else { len - end };
trace!(" ringbuf: push_buf {:?}..{:?}", end, end + n);
(unsafe { buf.add(end) }, n)
}
/// Get up to two buffers where data can be pushed to.
///
/// Write data starting at the beginning of the first buffer, then call
/// `push_done` with however many bytes you've pushed.
///
/// The buffers are suitable to DMA to.
///
/// If the ringbuf is full, both buffers will be zero length.
/// If there is only area available, the second buffer will be zero length.
///
/// The buffer stays valid as long as no other `Writer` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn push_bufs(&mut self) -> [(*mut u8, usize); 2] {
// Ordering: as per push_buf()
let mut start = self.0.start.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let mut end = self.0.end.load(Ordering::Relaxed);
let empty = start == end;
if start >= len {
start -= len
}
if end >= len {
end -= len
}
if start == end && !empty {
// full
return [(buf, 0), (buf, 0)];
}
let n0 = if start > end { start - end } else { len - end };
let n1 = if start <= end { start } else { 0 };
trace!(" ringbuf: push_bufs [{:?}..{:?}, {:?}..{:?}]", end, end + n0, 0, n1);
[(unsafe { buf.add(end) }, n0), (buf, n1)]
}
/// Mark n bytes as written and advance the write index.
pub fn push_done(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
let end = self.0.end.load(Ordering::Relaxed);
// Ordering: write `end` last, with Release ordering.
// The ordering ensures no preceding memory accesses (such as writing
// the actual data in the buffer) can be reordered down past it, which
// will guarantee the reader sees them after reading from `end`.
self.0.end.store(self.0.wrap(end + n), Ordering::Release);
}
}
impl<'a> Reader<'a> {
/// Pop data from the buffer in-place.
///
/// The closure `f` is called with the next data, it must process
/// some data from it and return the amount of bytes processed.
pub fn pop(&mut self, f: impl FnOnce(&[u8]) -> usize) -> usize {
let (p, n) = self.pop_buf();
let buf = unsafe { slice::from_raw_parts(p, n) };
let n = f(buf);
self.pop_done(n);
n
}
/// Pop one data byte.
///
/// Returns true if popped successfully.
pub fn pop_one(&mut self) -> Option<u8> {
let mut res = None;
self.pop(|f| match f {
&[] => 0,
&[x, ..] => {
res = Some(x);
1
}
});
res
}
/// Get a buffer where data can be popped from.
///
/// Equivalent to [`Self::pop_buf`] but returns a slice.
pub fn pop_slice(&mut self) -> &mut [u8] {
let (data, len) = self.pop_buf();
unsafe { slice::from_raw_parts_mut(data, len) }
}
/// Get a buffer where data can be popped from.
///
/// Read data from the start of the buffer, then call `pop_done` with
/// however many bytes you've processed.
///
/// The buffer is suitable to DMA from.
///
/// If the ringbuf is empty, size=0 will be returned.
///
/// The buffer stays valid as long as no other `Reader` method is called
/// and `init`/`deinit` aren't called on the ringbuf.
pub fn pop_buf(&mut self) -> (*mut u8, usize) {
// Ordering: pushing writes `end` last, so we read `end` first.
// Read it with Acquire ordering, so that the next accesses can't be reordered up past it.
// This is needed to guarantee we "see" the data written by the writer.
let mut end = self.0.end.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let mut start = self.0.start.load(Ordering::Relaxed);
if start == end {
return (buf, 0);
}
if start >= len {
start -= len
}
if end >= len {
end -= len
}
let n = if end > start { end - start } else { len - start };
trace!(" ringbuf: pop_buf {:?}..{:?}", start, start + n);
(unsafe { buf.add(start) }, n)
}
/// Mark n bytes as read and allow advance the read index.
pub fn pop_done(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
let start = self.0.start.load(Ordering::Relaxed);
// Ordering: write `start` last, with Release ordering.
// The ordering ensures no preceding memory accesses (such as reading
// the actual data) can be reordered down past it. This is necessary
// because writing to `start` is effectively freeing the read part of the
// buffer, which "gives permission" to the writer to write to it again.
// Therefore, all buffer accesses must be completed before this.
self.0.start.store(self.0.wrap(start + n), Ordering::Release);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn push_pop() {
let mut b = [0; 4];
let rb = RingBuffer::new();
unsafe {
rb.init(b.as_mut_ptr(), 4);
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), false);
rb.writer().push(|buf| {
assert_eq!(4, buf.len());
buf[0] = 1;
buf[1] = 2;
buf[2] = 3;
buf[3] = 4;
4
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
rb.writer().push(|buf| {
// If it's full, we can push 0 bytes.
assert_eq!(0, buf.len());
0
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
rb.reader().pop(|buf| {
assert_eq!(4, buf.len());
assert_eq!(1, buf[0]);
1
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
0
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
assert_eq!(2, buf[0]);
assert_eq!(3, buf[1]);
2
});
rb.reader().pop(|buf| {
assert_eq!(1, buf.len());
assert_eq!(4, buf[0]);
1
});
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), false);
rb.reader().pop(|buf| {
assert_eq!(0, buf.len());
0
});
rb.writer().push(|buf| {
assert_eq!(4, buf.len());
buf[0] = 10;
1
});
rb.writer().push(|buf| {
assert_eq!(3, buf.len());
buf[0] = 11;
buf[1] = 12;
2
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), false);
rb.writer().push(|buf| {
assert_eq!(1, buf.len());
buf[0] = 13;
1
});
assert_eq!(rb.is_empty(), false);
assert_eq!(rb.is_full(), true);
}
}
#[test]
fn zero_len() {
let rb = RingBuffer::new();
unsafe {
assert_eq!(rb.is_empty(), true);
assert_eq!(rb.is_full(), true);
rb.writer().push(|buf| {
assert_eq!(0, buf.len());
0
});
rb.reader().pop(|buf| {
assert_eq!(0, buf.len());
0
});
}
}
#[test]
fn push_slices() {
let mut b = [0; 4];
let rb = RingBuffer::new();
unsafe {
rb.init(b.as_mut_ptr(), 4);
/* push 3 -> [1 2 3 x] */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(4, ps[0].len());
assert_eq!(0, ps[1].len());
ps[0][0] = 1;
ps[0][1] = 2;
ps[0][2] = 3;
w.push_done(3);
drop(w);
/* pop 2 -> [x x 3 x] */
rb.reader().pop(|buf| {
assert_eq!(3, buf.len());
assert_eq!(1, buf[0]);
assert_eq!(2, buf[1]);
assert_eq!(3, buf[2]);
2
});
/* push 3 -> [5 6 3 4] */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(1, ps[0].len());
assert_eq!(2, ps[1].len());
ps[0][0] = 4;
ps[1][0] = 5;
ps[1][1] = 6;
w.push_done(3);
drop(w);
/* buf is now full */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(0, ps[0].len());
assert_eq!(0, ps[1].len());
/* pop 2 -> [5 6 x x] */
rb.reader().pop(|buf| {
assert_eq!(2, buf.len());
assert_eq!(3, buf[0]);
assert_eq!(4, buf[1]);
2
});
/* should now have one push slice again */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(2, ps[0].len());
assert_eq!(0, ps[1].len());
drop(w);
/* pop 2 -> [x x x x] */
rb.reader().pop(|buf| {
assert_eq!(2, buf.len());
assert_eq!(5, buf[0]);
assert_eq!(6, buf[1]);
2
});
/* should now have two push slices */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(2, ps[0].len());
assert_eq!(2, ps[1].len());
drop(w);
/* make sure we exercise all wrap around cases properly */
for _ in 0..10 {
/* should be empty, push 1 */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(4, ps[0].len() + ps[1].len());
w.push_done(1);
drop(w);
/* should have 1 element */
let mut w = rb.writer();
let ps = w.push_slices();
assert_eq!(3, ps[0].len() + ps[1].len());
drop(w);
/* pop 1 */
rb.reader().pop(|buf| {
assert_eq!(1, buf.len());
1
});
}
}
}
}