1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;

use embassy_hal_internal::into_ref;
use embedded_hal_02::blocking::delay::DelayUs;

use crate::adc::{Adc, AdcPin, Instance, SampleTime};
use crate::rcc::get_freqs;
use crate::time::Hertz;
use crate::{interrupt, Peripheral};

pub const VDDA_CALIB_MV: u32 = 3300;
pub const ADC_MAX: u32 = (1 << 12) - 1;
// No calibration data for F103, voltage should be 1.2v
pub const VREF_INT: u32 = 1200;

/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
    unsafe fn on_interrupt() {
        if T::regs().sr().read().eoc() {
            T::regs().cr1().modify(|w| w.set_eocie(false));
        } else {
            return;
        }

        T::state().waker.wake();
    }
}

pub struct Vref;
impl<T: Instance> AdcPin<T> for Vref {}
impl<T: Instance> super::sealed::AdcPin<T> for Vref {
    fn channel(&self) -> u8 {
        17
    }
}

pub struct Temperature;
impl<T: Instance> AdcPin<T> for Temperature {}
impl<T: Instance> super::sealed::AdcPin<T> for Temperature {
    fn channel(&self) -> u8 {
        16
    }
}

impl<'d, T: Instance> Adc<'d, T> {
    pub fn new(adc: impl Peripheral<P = T> + 'd, delay: &mut impl DelayUs<u32>) -> Self {
        into_ref!(adc);
        T::enable_and_reset();
        T::regs().cr2().modify(|reg| reg.set_adon(true));

        // 11.4: Before starting a calibration, the ADC must have been in power-on state (ADON bit = ‘1’)
        // for at least two ADC clock cycles
        delay.delay_us((1_000_000 * 2) / Self::freq().0 + 1);

        // Reset calibration
        T::regs().cr2().modify(|reg| reg.set_rstcal(true));
        while T::regs().cr2().read().rstcal() {
            // spin
        }

        // Calibrate
        T::regs().cr2().modify(|reg| reg.set_cal(true));
        while T::regs().cr2().read().cal() {
            // spin
        }

        // One cycle after calibration
        delay.delay_us((1_000_000) / Self::freq().0 + 1);

        Self {
            adc,
            sample_time: Default::default(),
        }
    }

    fn freq() -> Hertz {
        unsafe { get_freqs() }.adc.unwrap()
    }

    pub fn sample_time_for_us(&self, us: u32) -> SampleTime {
        match us * Self::freq().0 / 1_000_000 {
            0..=1 => SampleTime::Cycles1_5,
            2..=7 => SampleTime::Cycles7_5,
            8..=13 => SampleTime::Cycles13_5,
            14..=28 => SampleTime::Cycles28_5,
            29..=41 => SampleTime::Cycles41_5,
            42..=55 => SampleTime::Cycles55_5,
            56..=71 => SampleTime::Cycles71_5,
            _ => SampleTime::Cycles239_5,
        }
    }

    pub fn enable_vref(&self, _delay: &mut impl DelayUs<u32>) -> Vref {
        T::regs().cr2().modify(|reg| {
            reg.set_tsvrefe(true);
        });
        Vref {}
    }

    pub fn enable_temperature(&self) -> Temperature {
        T::regs().cr2().modify(|reg| {
            reg.set_tsvrefe(true);
        });
        Temperature {}
    }

    pub fn set_sample_time(&mut self, sample_time: SampleTime) {
        self.sample_time = sample_time;
    }

    /// Perform a single conversion.
    async fn convert(&mut self) -> u16 {
        T::regs().cr2().modify(|reg| {
            reg.set_adon(true);
            reg.set_swstart(true);
        });
        T::regs().cr1().modify(|w| w.set_eocie(true));

        poll_fn(|cx| {
            T::state().waker.register(cx.waker());

            if !T::regs().cr2().read().swstart() && T::regs().sr().read().eoc() {
                Poll::Ready(())
            } else {
                Poll::Pending
            }
        })
        .await;

        T::regs().dr().read().0 as u16
    }

    pub async fn read(&mut self, pin: &mut impl AdcPin<T>) -> u16 {
        Self::set_channel_sample_time(pin.channel(), self.sample_time);
        T::regs().cr1().modify(|reg| {
            reg.set_scan(false);
            reg.set_discen(false);
        });
        T::regs().sqr1().modify(|reg| reg.set_l(0));

        T::regs().cr2().modify(|reg| {
            reg.set_cont(false);
            reg.set_exttrig(true);
            reg.set_swstart(false);
            reg.set_extsel(7); // SWSTART
        });

        // Configure the channel to sample
        T::regs().sqr3().write(|reg| reg.set_sq(0, pin.channel()));
        self.convert().await
    }

    fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
        let sample_time = sample_time.into();
        if ch <= 9 {
            T::regs().smpr2().modify(|reg| reg.set_smp(ch as _, sample_time));
        } else {
            T::regs().smpr1().modify(|reg| reg.set_smp((ch - 10) as _, sample_time));
        }
    }
}

impl<'d, T: Instance> Drop for Adc<'d, T> {
    fn drop(&mut self) {
        T::regs().cr2().modify(|reg| reg.set_adon(false));

        T::disable();
    }
}