embassy_stm32/dma/
ringbuffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#![cfg_attr(gpdma, allow(unused))]

use core::future::poll_fn;
use core::ops::Range;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Poll, Waker};

use super::word::Word;

/// A "read-only" ring-buffer to be used together with the DMA controller which
/// writes in a circular way, "uncontrolled" to the buffer.
///
/// A snapshot of the ring buffer state can be attained by setting the `ndtr` field
/// to the current register value. `ndtr` describes the current position of the DMA
/// write.
///
/// # Buffer layout
///
/// ```text
/// Without wraparound:                             With wraparound:
///
///  + buf                      +--- NDTR ---+       + buf        +---------- NDTR ----------+
///  |                          |            |       |            |                          |
///  v                          v            v       v            v                          v
/// +-----------------------------------------+     +-----------------------------------------+
/// |oooooooooooXXXXXXXXXXXXXXXXoooooooooooooo|     |XXXXXXXXXXXXXooooooooooooXXXXXXXXXXXXXXXX|
/// +-----------------------------------------+     +-----------------------------------------+
///  ^          ^               ^                    ^            ^           ^
///  |          |               |                    |            |           |
///  +- start --+               |                    +- end ------+           |
///  |                          |                    |                        |
///  +- end --------------------+                    +- start ----------------+
/// ```
pub struct ReadableDmaRingBuffer<'a, W: Word> {
    pub(crate) dma_buf: &'a mut [W],
    start: usize,
}

#[derive(Debug, PartialEq)]
pub struct OverrunError;

pub trait DmaCtrl {
    /// Get the NDTR register value, i.e. the space left in the underlying
    /// buffer until the dma writer wraps.
    fn get_remaining_transfers(&self) -> usize;

    /// Get the transfer completed counter.
    /// This counter is incremented by the dma controller when NDTR is reloaded,
    /// i.e. when the writing wraps.
    fn get_complete_count(&self) -> usize;

    /// Reset the transfer completed counter to 0 and return the value just prior to the reset.
    fn reset_complete_count(&mut self) -> usize;

    /// Set the waker for a running poll_fn
    fn set_waker(&mut self, waker: &Waker);
}

impl<'a, W: Word> ReadableDmaRingBuffer<'a, W> {
    pub fn new(dma_buf: &'a mut [W]) -> Self {
        Self { dma_buf, start: 0 }
    }

    /// Reset the ring buffer to its initial state
    pub fn clear(&mut self, dma: &mut impl DmaCtrl) {
        self.start = 0;
        dma.reset_complete_count();
    }

    /// The capacity of the ringbuffer
    pub const fn cap(&self) -> usize {
        self.dma_buf.len()
    }

    /// The current position of the ringbuffer
    fn pos(&self, dma: &mut impl DmaCtrl) -> usize {
        self.cap() - dma.get_remaining_transfers()
    }

    /// Read an exact number of elements from the ringbuffer.
    ///
    /// Returns the remaining number of elements available for immediate reading.
    /// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
    ///
    /// Async/Wake Behavior:
    /// The underlying DMA peripheral only can wake us when its buffer pointer has reached the halfway point,
    /// and when it wraps around. This means that when called with a buffer of length 'M', when this
    /// ring buffer was created with a buffer of size 'N':
    /// - If M equals N/2 or N/2 divides evenly into M, this function will return every N/2 elements read on the DMA source.
    /// - Otherwise, this function may need up to N/2 extra elements to arrive before returning.
    pub async fn read_exact(&mut self, dma: &mut impl DmaCtrl, buffer: &mut [W]) -> Result<usize, OverrunError> {
        let mut read_data = 0;
        let buffer_len = buffer.len();

        poll_fn(|cx| {
            dma.set_waker(cx.waker());

            compiler_fence(Ordering::SeqCst);

            match self.read(dma, &mut buffer[read_data..buffer_len]) {
                Ok((len, remaining)) => {
                    read_data += len;
                    if read_data == buffer_len {
                        Poll::Ready(Ok(remaining))
                    } else {
                        Poll::Pending
                    }
                }
                Err(e) => Poll::Ready(Err(e)),
            }
        })
        .await
    }

    /// Read elements from the ring buffer
    /// Return a tuple of the length read and the length remaining in the buffer
    /// If not all of the elements were read, then there will be some elements in the buffer remaining
    /// The length remaining is the capacity, ring_buf.len(), less the elements remaining after the read
    /// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
    pub fn read(&mut self, dma: &mut impl DmaCtrl, buf: &mut [W]) -> Result<(usize, usize), OverrunError> {
        /*
            This algorithm is optimistic: we assume we haven't overrun more than a full buffer and then check
            after we've done our work to see we have. This is because on stm32, an interrupt is not guaranteed
            to fire in the same clock cycle that a register is read, so checking get_complete_count early does
            not yield relevant information.

            Therefore, the only variable we really need to know is ndtr. If the dma has overrun by more than a full
            buffer, we will do a bit more work than we have to, but algorithms should not be optimized for error
            conditions.

            After we've done our work, we confirm that we haven't overrun more than a full buffer, and also that
            the dma has not overrun within the data we could have copied. We check the data we could have copied
            rather than the data we actually copied because it costs nothing and confirms an error condition
            earlier.
        */
        let end = self.pos(dma);
        if self.start == end && dma.get_complete_count() == 0 {
            // No elements are available in the buffer
            Ok((0, self.cap()))
        } else if self.start < end {
            // The available, unread portion in the ring buffer DOES NOT wrap
            // Copy out the elements from the dma buffer
            let len = self.copy_to(buf, self.start..end);

            compiler_fence(Ordering::SeqCst);

            /*
                first, check if the dma has wrapped at all if it's after end
                or more than once if it's before start

                this is in a critical section to try to reduce mushy behavior.
                it's not ideal but it's the best we can do

                then, get the current position of of the dma write and check
                if it's inside data we could have copied
            */
            let (pos, complete_count) = critical_section::with(|_| (self.pos(dma), dma.get_complete_count()));
            if (pos >= self.start && pos < end) || (complete_count > 0 && pos >= end) || complete_count > 1 {
                Err(OverrunError)
            } else {
                self.start = (self.start + len) % self.cap();

                Ok((len, self.cap() - self.start))
            }
        } else if self.start + buf.len() < self.cap() {
            // The available, unread portion in the ring buffer DOES wrap
            // The DMA writer has wrapped since we last read and is currently
            // writing (or the next byte added will be) in the beginning of the ring buffer.

            // The provided read buffer is not large enough to include all elements from the tail of the dma buffer.

            // Copy out from the dma buffer
            let len = self.copy_to(buf, self.start..self.cap());

            compiler_fence(Ordering::SeqCst);

            /*
                first, check if the dma has wrapped around more than once

                then, get the current position of of the dma write and check
                if it's inside data we could have copied
            */
            let pos = self.pos(dma);
            if pos > self.start || pos < end || dma.get_complete_count() > 1 {
                Err(OverrunError)
            } else {
                self.start = (self.start + len) % self.cap();

                Ok((len, self.start + end))
            }
        } else {
            // The available, unread portion in the ring buffer DOES wrap
            // The DMA writer has wrapped since we last read and is currently
            // writing (or the next byte added will be) in the beginning of the ring buffer.

            // The provided read buffer is large enough to include all elements from the tail of the dma buffer,
            // so the next read will not have any unread tail elements in the ring buffer.

            // Copy out from the dma buffer
            let tail = self.copy_to(buf, self.start..self.cap());
            let head = self.copy_to(&mut buf[tail..], 0..end);

            compiler_fence(Ordering::SeqCst);

            /*
                first, check if the dma has wrapped around more than once

                then, get the current position of of the dma write and check
                if it's inside data we could have copied
            */
            let pos = self.pos(dma);
            if pos > self.start || pos < end || dma.reset_complete_count() > 1 {
                Err(OverrunError)
            } else {
                self.start = head;
                Ok((tail + head, self.cap() - self.start))
            }
        }
    }
    /// Copy from the dma buffer at `data_range` into `buf`
    fn copy_to(&mut self, buf: &mut [W], data_range: Range<usize>) -> usize {
        // Limit the number of elements that can be copied
        let length = usize::min(data_range.len(), buf.len());

        // Copy from dma buffer into read buffer
        // We need to do it like this instead of a simple copy_from_slice() because
        // reading from a part of memory that may be simultaneously written to is unsafe
        unsafe {
            let dma_buf = self.dma_buf.as_ptr();

            for i in 0..length {
                buf[i] = core::ptr::read_volatile(dma_buf.offset((data_range.start + i) as isize));
            }
        }

        length
    }
}

pub struct WritableDmaRingBuffer<'a, W: Word> {
    pub(crate) dma_buf: &'a mut [W],
    end: usize,
}

impl<'a, W: Word> WritableDmaRingBuffer<'a, W> {
    pub fn new(dma_buf: &'a mut [W]) -> Self {
        Self { dma_buf, end: 0 }
    }

    /// Reset the ring buffer to its initial state
    pub fn clear(&mut self, dma: &mut impl DmaCtrl) {
        self.end = 0;
        dma.reset_complete_count();
    }

    /// The capacity of the ringbuffer
    pub const fn cap(&self) -> usize {
        self.dma_buf.len()
    }

    /// The current position of the ringbuffer
    fn pos(&self, dma: &mut impl DmaCtrl) -> usize {
        self.cap() - dma.get_remaining_transfers()
    }

    /// Write an exact number of elements to the ringbuffer.
    pub async fn write_exact(&mut self, dma: &mut impl DmaCtrl, buffer: &[W]) -> Result<usize, OverrunError> {
        let mut written_data = 0;
        let buffer_len = buffer.len();

        poll_fn(|cx| {
            dma.set_waker(cx.waker());

            compiler_fence(Ordering::SeqCst);

            match self.write(dma, &buffer[written_data..buffer_len]) {
                Ok((len, remaining)) => {
                    written_data += len;
                    if written_data == buffer_len {
                        Poll::Ready(Ok(remaining))
                    } else {
                        Poll::Pending
                    }
                }
                Err(e) => Poll::Ready(Err(e)),
            }
        })
        .await
    }

    /// Write elements from the ring buffer
    /// Return a tuple of the length written and the capacity remaining to be written in the buffer
    pub fn write(&mut self, dma: &mut impl DmaCtrl, buf: &[W]) -> Result<(usize, usize), OverrunError> {
        let start = self.pos(dma);
        if start > self.end {
            // The occupied portion in the ring buffer DOES wrap
            let len = self.copy_from(buf, self.end..start);

            compiler_fence(Ordering::SeqCst);

            // Confirm that the DMA is not inside data we could have written
            let (pos, complete_count) = critical_section::with(|_| (self.pos(dma), dma.get_complete_count()));
            if (pos >= self.end && pos < start) || (complete_count > 0 && pos >= start) || complete_count > 1 {
                Err(OverrunError)
            } else {
                self.end = (self.end + len) % self.cap();

                Ok((len, self.cap() - (start - self.end)))
            }
        } else if start == self.end && dma.get_complete_count() == 0 {
            Ok((0, 0))
        } else if start <= self.end && self.end + buf.len() < self.cap() {
            // The occupied portion in the ring buffer DOES NOT wrap
            // and copying elements into the buffer WILL NOT cause it to

            // Copy into the dma buffer
            let len = self.copy_from(buf, self.end..self.cap());

            compiler_fence(Ordering::SeqCst);

            // Confirm that the DMA is not inside data we could have written
            let pos = self.pos(dma);
            if pos > self.end || pos < start || dma.get_complete_count() > 1 {
                Err(OverrunError)
            } else {
                self.end = (self.end + len) % self.cap();

                Ok((len, self.cap() - (self.end - start)))
            }
        } else {
            // The occupied portion in the ring buffer DOES NOT wrap
            // and copying elements into the buffer WILL cause it to

            let tail = self.copy_from(buf, self.end..self.cap());
            let head = self.copy_from(&buf[tail..], 0..start);

            compiler_fence(Ordering::SeqCst);

            // Confirm that the DMA is not inside data we could have written
            let pos = self.pos(dma);
            if pos > self.end || pos < start || dma.reset_complete_count() > 1 {
                Err(OverrunError)
            } else {
                self.end = head;

                Ok((tail + head, self.cap() - (start - self.end)))
            }
        }
    }
    /// Copy into the dma buffer at `data_range` from `buf`
    fn copy_from(&mut self, buf: &[W], data_range: Range<usize>) -> usize {
        // Limit the number of elements that can be copied
        let length = usize::min(data_range.len(), buf.len());

        // Copy into dma buffer from read buffer
        // We need to do it like this instead of a simple copy_from_slice() because
        // reading from a part of memory that may be simultaneously written to is unsafe
        unsafe {
            let dma_buf = self.dma_buf.as_mut_ptr();

            for i in 0..length {
                core::ptr::write_volatile(dma_buf.offset((data_range.start + i) as isize), buf[i]);
            }
        }

        length
    }
}
#[cfg(test)]
mod tests {
    use core::array;
    use std::{cell, vec};

    use super::*;

    #[allow(dead_code)]
    #[derive(PartialEq, Debug)]
    enum TestCircularTransferRequest {
        GetCompleteCount(usize),
        ResetCompleteCount(usize),
        PositionRequest(usize),
    }

    struct TestCircularTransfer {
        len: usize,
        requests: cell::RefCell<vec::Vec<TestCircularTransferRequest>>,
    }

    impl DmaCtrl for TestCircularTransfer {
        fn get_remaining_transfers(&self) -> usize {
            match self.requests.borrow_mut().pop().unwrap() {
                TestCircularTransferRequest::PositionRequest(pos) => {
                    let len = self.len;

                    assert!(len >= pos);

                    len - pos
                }
                _ => unreachable!(),
            }
        }

        fn get_complete_count(&self) -> usize {
            match self.requests.borrow_mut().pop().unwrap() {
                TestCircularTransferRequest::GetCompleteCount(complete_count) => complete_count,
                _ => unreachable!(),
            }
        }

        fn reset_complete_count(&mut self) -> usize {
            match self.requests.get_mut().pop().unwrap() {
                TestCircularTransferRequest::ResetCompleteCount(complete_count) => complete_count,
                _ => unreachable!(),
            }
        }

        fn set_waker(&mut self, waker: &Waker) {}
    }

    impl TestCircularTransfer {
        pub fn new(len: usize) -> Self {
            Self {
                requests: cell::RefCell::new(vec![]),
                len,
            }
        }

        pub fn setup(&self, mut requests: vec::Vec<TestCircularTransferRequest>) {
            requests.reverse();
            self.requests.replace(requests);
        }
    }

    #[test]
    fn empty_and_read_not_started() {
        let mut dma_buf = [0u8; 16];
        let ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
    }

    #[test]
    fn can_read() {
        let mut dma = TestCircularTransfer::new(16);

        let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
        let mut ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
        assert_eq!(16, ringbuf.cap());

        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(8),
            TestCircularTransferRequest::PositionRequest(10),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 2];
        assert_eq!(2, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!([0, 1], buf);
        assert_eq!(2, ringbuf.start);

        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(10),
            TestCircularTransferRequest::PositionRequest(12),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 2];
        assert_eq!(2, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!([2, 3], buf);
        assert_eq!(4, ringbuf.start);

        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(12),
            TestCircularTransferRequest::PositionRequest(14),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 8];
        assert_eq!(8, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!([4, 5, 6, 7, 8, 9], buf[..6]);
        assert_eq!(12, ringbuf.start);
    }

    #[test]
    fn can_read_with_wrap() {
        let mut dma = TestCircularTransfer::new(16);

        let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
        let mut ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
        assert_eq!(16, ringbuf.cap());

        /*
            Read to close to the end of the buffer
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(14),
            TestCircularTransferRequest::PositionRequest(16),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 14];
        assert_eq!(14, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(14, ringbuf.start);

        /*
            Now, read around the buffer
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::PositionRequest(8),
            TestCircularTransferRequest::ResetCompleteCount(1),
        ]);
        let mut buf = [0; 6];
        assert_eq!(6, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(4, ringbuf.start);
    }

    #[test]
    fn can_read_when_dma_writer_is_wrapped_and_read_does_not_wrap() {
        let mut dma = TestCircularTransfer::new(16);

        let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
        let mut ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
        assert_eq!(16, ringbuf.cap());

        /*
            Read to close to the end of the buffer
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(14),
            TestCircularTransferRequest::PositionRequest(16),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 14];
        assert_eq!(14, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(14, ringbuf.start);

        /*
            Now, read to the end of the buffer
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::PositionRequest(8),
            TestCircularTransferRequest::ResetCompleteCount(1),
        ]);
        let mut buf = [0; 2];
        assert_eq!(2, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(0, ringbuf.start);
    }

    #[test]
    fn can_read_when_dma_writer_wraps_once_with_same_ndtr() {
        let mut dma = TestCircularTransfer::new(16);

        let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
        let mut ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
        assert_eq!(16, ringbuf.cap());

        /*
            Read to about the middle of the buffer
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 6];
        assert_eq!(6, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(6, ringbuf.start);

        /*
            Now, wrap the DMA controller around
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::GetCompleteCount(1),
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::GetCompleteCount(1),
        ]);
        let mut buf = [0; 6];
        assert_eq!(6, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(12, ringbuf.start);
    }

    #[test]
    fn cannot_read_when_dma_writer_overwrites_during_not_wrapping_read() {
        let mut dma = TestCircularTransfer::new(16);

        let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
        let mut ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
        assert_eq!(16, ringbuf.cap());

        /*
            Read a few bytes
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(2),
            TestCircularTransferRequest::PositionRequest(2),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 6];
        assert_eq!(2, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(2, ringbuf.start);

        /*
            Now, overtake the reader
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(4),
            TestCircularTransferRequest::PositionRequest(6),
            TestCircularTransferRequest::GetCompleteCount(1),
        ]);
        let mut buf = [0; 6];
        assert_eq!(OverrunError, ringbuf.read(&mut dma, &mut buf).unwrap_err());
    }

    #[test]
    fn cannot_read_when_dma_writer_overwrites_during_wrapping_read() {
        let mut dma = TestCircularTransfer::new(16);

        let mut dma_buf: [u8; 16] = array::from_fn(|idx| idx as u8); // 0, 1, ..., 15
        let mut ringbuf = ReadableDmaRingBuffer::new(&mut dma_buf);

        assert_eq!(0, ringbuf.start);
        assert_eq!(16, ringbuf.cap());

        /*
            Read to close to the end of the buffer
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(14),
            TestCircularTransferRequest::PositionRequest(16),
            TestCircularTransferRequest::GetCompleteCount(0),
        ]);
        let mut buf = [0; 14];
        assert_eq!(14, ringbuf.read(&mut dma, &mut buf).unwrap().0);
        assert_eq!(14, ringbuf.start);

        /*
            Now, overtake the reader
        */
        dma.setup(vec![
            TestCircularTransferRequest::PositionRequest(8),
            TestCircularTransferRequest::PositionRequest(10),
            TestCircularTransferRequest::ResetCompleteCount(2),
        ]);
        let mut buf = [0; 6];
        assert_eq!(OverrunError, ringbuf.read(&mut dma, &mut buf).unwrap_err());
    }
}