embassy_stm32/
time_driver.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
use core::cell::Cell;
use core::convert::TryInto;
use core::sync::atomic::{compiler_fence, AtomicU32, AtomicU8, Ordering};
use core::{mem, ptr};

use critical_section::CriticalSection;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::blocking_mutex::Mutex;
use embassy_time_driver::{AlarmHandle, Driver, TICK_HZ};
use stm32_metapac::timer::regs;

use crate::interrupt::typelevel::Interrupt;
use crate::pac::timer::vals;
use crate::rcc::sealed::RccPeripheral;
#[cfg(feature = "low-power")]
use crate::rtc::Rtc;
use crate::timer::sealed::{Basic16bitInstance as BasicInstance, GeneralPurpose16bitInstance as Instance};
use crate::{interrupt, peripherals};

// NOTE regarding ALARM_COUNT:
//
// As of 2023-12-04, this driver is implemented using CC1 as the halfway rollover interrupt, and any
// additional CC capabilities to provide timer alarms to embassy-time. embassy-time requires AT LEAST
// one alarm to be allocatable, which means timers that only have CC1, such as TIM16/TIM17, are not
// candidates for use as an embassy-time driver provider.
//
// The values of ALARM_COUNT below are not the TOTAL CC registers available, but rather the number
// available after reserving CC1 for regular time keeping. For example, TIM2 has four CC registers:
// CC1, CC2, CC3, and CC4, so it can provide ALARM_COUNT = 3.

#[cfg(not(any(time_driver_tim12, time_driver_tim15)))]
const ALARM_COUNT: usize = 3;

#[cfg(any(time_driver_tim12, time_driver_tim15))]
const ALARM_COUNT: usize = 1;

#[cfg(time_driver_tim2)]
type T = peripherals::TIM2;
#[cfg(time_driver_tim3)]
type T = peripherals::TIM3;
#[cfg(time_driver_tim4)]
type T = peripherals::TIM4;
#[cfg(time_driver_tim5)]
type T = peripherals::TIM5;
#[cfg(time_driver_tim9)]
type T = peripherals::TIM9;
#[cfg(time_driver_tim11)]
type T = peripherals::TIM11;
#[cfg(time_driver_tim12)]
type T = peripherals::TIM12;
#[cfg(time_driver_tim15)]
type T = peripherals::TIM15;

foreach_interrupt! {
    (TIM2, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim2)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM3, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim3)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM4, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim4)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM5, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim5)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM9, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim9)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM11, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim11)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM12, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim12)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
    (TIM15, timer, $block:ident, UP, $irq:ident) => {
        #[cfg(time_driver_tim15)]
        #[cfg(feature = "rt")]
        #[interrupt]
        fn $irq() {
            DRIVER.on_interrupt()
        }
    };
}

// Clock timekeeping works with something we call "periods", which are time intervals
// of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
//
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
// - `period` and `counter` start at 0
// - `period` is incremented on overflow (at counter value 0)
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
//
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
// This allows for now() to return the correct value even if it races an overflow.
//
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
// the expected range for the `period` parity, we're done. If it doesn't, this means that
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
// corresponds to the next period.
//
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
fn calc_now(period: u32, counter: u16) -> u64 {
    ((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
}

struct AlarmState {
    timestamp: Cell<u64>,

    // This is really a Option<(fn(*mut ()), *mut ())>
    // but fn pointers aren't allowed in const yet
    callback: Cell<*const ()>,
    ctx: Cell<*mut ()>,
}

unsafe impl Send for AlarmState {}

impl AlarmState {
    const fn new() -> Self {
        Self {
            timestamp: Cell::new(u64::MAX),
            callback: Cell::new(ptr::null()),
            ctx: Cell::new(ptr::null_mut()),
        }
    }
}

pub(crate) struct RtcDriver {
    /// Number of 2^15 periods elapsed since boot.
    period: AtomicU32,
    alarm_count: AtomicU8,
    /// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
    alarms: Mutex<CriticalSectionRawMutex, [AlarmState; ALARM_COUNT]>,
    #[cfg(feature = "low-power")]
    rtc: Mutex<CriticalSectionRawMutex, Cell<Option<&'static Rtc>>>,
}

const ALARM_STATE_NEW: AlarmState = AlarmState::new();

embassy_time_driver::time_driver_impl!(static DRIVER: RtcDriver = RtcDriver {
    period: AtomicU32::new(0),
    alarm_count: AtomicU8::new(0),
    alarms: Mutex::const_new(CriticalSectionRawMutex::new(), [ALARM_STATE_NEW; ALARM_COUNT]),
    #[cfg(feature = "low-power")]
    rtc: Mutex::const_new(CriticalSectionRawMutex::new(), Cell::new(None)),
});

impl RtcDriver {
    fn init(&'static self, cs: critical_section::CriticalSection) {
        let r = T::regs_gp16();

        <T as RccPeripheral>::enable_and_reset_with_cs(cs);

        let timer_freq = T::frequency();

        r.cr1().modify(|w| w.set_cen(false));
        r.cnt().write(|w| w.set_cnt(0));

        let psc = timer_freq.0 / TICK_HZ as u32 - 1;
        let psc: u16 = match psc.try_into() {
            Err(_) => panic!("psc division overflow: {}", psc),
            Ok(n) => n,
        };

        r.psc().write(|w| w.set_psc(psc));
        r.arr().write(|w| w.set_arr(u16::MAX));

        // Set URS, generate update and clear URS
        r.cr1().modify(|w| w.set_urs(vals::Urs::COUNTERONLY));
        r.egr().write(|w| w.set_ug(true));
        r.cr1().modify(|w| w.set_urs(vals::Urs::ANYEVENT));

        // Mid-way point
        r.ccr(0).write(|w| w.set_ccr(0x8000));

        // Enable overflow and half-overflow interrupts
        r.dier().write(|w| {
            w.set_uie(true);
            w.set_ccie(0, true);
        });

        <T as BasicInstance>::Interrupt::unpend();
        unsafe { <T as BasicInstance>::Interrupt::enable() };

        r.cr1().modify(|w| w.set_cen(true));
    }

    fn on_interrupt(&self) {
        let r = T::regs_gp16();

        // XXX: reduce the size of this critical section ?
        critical_section::with(|cs| {
            let sr = r.sr().read();
            let dier = r.dier().read();

            // Clear all interrupt flags. Bits in SR are "write 0 to clear", so write the bitwise NOT.
            // Other approaches such as writing all zeros, or RMWing won't work, they can
            // miss interrupts.
            r.sr().write_value(regs::SrGp(!sr.0));

            // Overflow
            if sr.uif() {
                self.next_period();
            }

            // Half overflow
            if sr.ccif(0) {
                self.next_period();
            }

            for n in 0..ALARM_COUNT {
                if sr.ccif(n + 1) && dier.ccie(n + 1) {
                    self.trigger_alarm(n, cs);
                }
            }
        })
    }

    fn next_period(&self) {
        let r = T::regs_gp16();

        // We only modify the period from the timer interrupt, so we know this can't race.
        let period = self.period.load(Ordering::Relaxed) + 1;
        self.period.store(period, Ordering::Relaxed);
        let t = (period as u64) << 15;

        critical_section::with(move |cs| {
            r.dier().modify(move |w| {
                for n in 0..ALARM_COUNT {
                    let alarm = &self.alarms.borrow(cs)[n];
                    let at = alarm.timestamp.get();

                    if at < t + 0xc000 {
                        // just enable it. `set_alarm` has already set the correct CCR val.
                        w.set_ccie(n + 1, true);
                    }
                }
            })
        })
    }

    fn get_alarm<'a>(&'a self, cs: CriticalSection<'a>, alarm: AlarmHandle) -> &'a AlarmState {
        // safety: we're allowed to assume the AlarmState is created by us, and
        // we never create one that's out of bounds.
        unsafe { self.alarms.borrow(cs).get_unchecked(alarm.id() as usize) }
    }

    fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
        let alarm = &self.alarms.borrow(cs)[n];
        alarm.timestamp.set(u64::MAX);

        // Call after clearing alarm, so the callback can set another alarm.

        // safety:
        // - we can ignore the possibility of `f` being unset (null) because of the safety contract of `allocate_alarm`.
        // - other than that we only store valid function pointers into alarm.callback
        let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback.get()) };
        f(alarm.ctx.get());
    }

    /*
        Low-power private functions: all operate within a critical seciton
    */

    #[cfg(feature = "low-power")]
    /// Compute the approximate amount of time until the next alarm
    fn time_until_next_alarm(&self, cs: CriticalSection) -> embassy_time::Duration {
        let now = self.now() + 32;

        embassy_time::Duration::from_ticks(
            self.alarms
                .borrow(cs)
                .iter()
                .map(|alarm: &AlarmState| alarm.timestamp.get().saturating_sub(now))
                .min()
                .unwrap_or(u64::MAX),
        )
    }

    #[cfg(feature = "low-power")]
    /// Add the given offset to the current time
    fn add_time(&self, offset: embassy_time::Duration, cs: CriticalSection) {
        let offset = offset.as_ticks();
        let cnt = T::regs_gp16().cnt().read().cnt() as u32;
        let period = self.period.load(Ordering::SeqCst);

        // Correct the race, if it exists
        let period = if period & 1 == 1 && cnt < u16::MAX as u32 / 2 {
            period + 1
        } else {
            period
        };

        // Normalize to the full overflow
        let period = (period / 2) * 2;

        // Add the offset
        let period = period + 2 * (offset / u16::MAX as u64) as u32;
        let cnt = cnt + (offset % u16::MAX as u64) as u32;

        let (cnt, period) = if cnt > u16::MAX as u32 {
            (cnt - u16::MAX as u32, period + 2)
        } else {
            (cnt, period)
        };

        let period = if cnt > u16::MAX as u32 / 2 { period + 1 } else { period };

        self.period.store(period, Ordering::SeqCst);
        T::regs_gp16().cnt().write(|w| w.set_cnt(cnt as u16));

        // Now, recompute all alarms
        for i in 0..ALARM_COUNT {
            let alarm_handle = unsafe { AlarmHandle::new(i as u8) };
            let alarm = self.get_alarm(cs, alarm_handle);

            self.set_alarm(alarm_handle, alarm.timestamp.get());
        }
    }

    #[cfg(feature = "low-power")]
    /// Stop the wakeup alarm, if enabled, and add the appropriate offset
    fn stop_wakeup_alarm(&self, cs: CriticalSection) {
        if let Some(offset) = self.rtc.borrow(cs).get().unwrap().stop_wakeup_alarm(cs) {
            self.add_time(offset, cs);
        }
    }

    /*
        Low-power public functions: all create a critical section
    */
    #[cfg(feature = "low-power")]
    /// Set the rtc but panic if it's already been set
    pub(crate) fn set_rtc(&self, rtc: &'static Rtc) {
        critical_section::with(|cs| {
            rtc.stop_wakeup_alarm(cs);

            assert!(self.rtc.borrow(cs).replace(Some(rtc)).is_none())
        });
    }

    #[cfg(feature = "low-power")]
    /// The minimum pause time beyond which the executor will enter a low-power state.
    pub(crate) const MIN_STOP_PAUSE: embassy_time::Duration = embassy_time::Duration::from_millis(250);

    #[cfg(feature = "low-power")]
    /// Pause the timer if ready; return err if not
    pub(crate) fn pause_time(&self) -> Result<(), ()> {
        critical_section::with(|cs| {
            /*
                If the wakeup timer is currently running, then we need to stop it and
                add the elapsed time to the current time, as this will impact the result
                of `time_until_next_alarm`.
            */
            self.stop_wakeup_alarm(cs);

            let time_until_next_alarm = self.time_until_next_alarm(cs);
            if time_until_next_alarm < Self::MIN_STOP_PAUSE {
                Err(())
            } else {
                self.rtc
                    .borrow(cs)
                    .get()
                    .unwrap()
                    .start_wakeup_alarm(time_until_next_alarm, cs);

                T::regs_gp16().cr1().modify(|w| w.set_cen(false));

                Ok(())
            }
        })
    }

    #[cfg(feature = "low-power")]
    /// Resume the timer with the given offset
    pub(crate) fn resume_time(&self) {
        if T::regs_gp16().cr1().read().cen() {
            // Time isn't currently stopped

            return;
        }

        critical_section::with(|cs| {
            self.stop_wakeup_alarm(cs);

            T::regs_gp16().cr1().modify(|w| w.set_cen(true));
        })
    }
}

impl Driver for RtcDriver {
    fn now(&self) -> u64 {
        let r = T::regs_gp16();

        let period = self.period.load(Ordering::Relaxed);
        compiler_fence(Ordering::Acquire);
        let counter = r.cnt().read().cnt();
        calc_now(period, counter)
    }

    unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
        critical_section::with(|_| {
            let id = self.alarm_count.load(Ordering::Relaxed);
            if id < ALARM_COUNT as u8 {
                self.alarm_count.store(id + 1, Ordering::Relaxed);
                Some(AlarmHandle::new(id))
            } else {
                None
            }
        })
    }

    fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
        critical_section::with(|cs| {
            let alarm = self.get_alarm(cs, alarm);

            alarm.callback.set(callback as *const ());
            alarm.ctx.set(ctx);
        })
    }

    fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) -> bool {
        critical_section::with(|cs| {
            let r = T::regs_gp16();

            let n = alarm.id() as usize;
            let alarm = self.get_alarm(cs, alarm);
            alarm.timestamp.set(timestamp);

            let t = self.now();
            if timestamp <= t {
                // If alarm timestamp has passed the alarm will not fire.
                // Disarm the alarm and return `false` to indicate that.
                r.dier().modify(|w| w.set_ccie(n + 1, false));

                alarm.timestamp.set(u64::MAX);

                return false;
            }

            // Write the CCR value regardless of whether we're going to enable it now or not.
            // This way, when we enable it later, the right value is already set.
            r.ccr(n + 1).write(|w| w.set_ccr(timestamp as u16));

            // Enable it if it'll happen soon. Otherwise, `next_period` will enable it.
            let diff = timestamp - t;
            r.dier().modify(|w| w.set_ccie(n + 1, diff < 0xc000));

            // Reevaluate if the alarm timestamp is still in the future
            let t = self.now();
            if timestamp <= t {
                // If alarm timestamp has passed since we set it, we have a race condition and
                // the alarm may or may not have fired.
                // Disarm the alarm and return `false` to indicate that.
                // It is the caller's responsibility to handle this ambiguity.
                r.dier().modify(|w| w.set_ccie(n + 1, false));

                alarm.timestamp.set(u64::MAX);

                return false;
            }

            // We're confident the alarm will ring in the future.
            true
        })
    }
}

#[cfg(feature = "low-power")]
pub(crate) fn get_driver() -> &'static RtcDriver {
    &DRIVER
}

pub(crate) fn init(cs: CriticalSection) {
    DRIVER.init(cs)
}