1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//! PWM driver with complementary output support.

use core::marker::PhantomData;

use embassy_hal_internal::{into_ref, PeripheralRef};
use stm32_metapac::timer::vals::Ckd;

use super::simple_pwm::*;
use super::*;
#[allow(unused_imports)]
use crate::gpio::sealed::{AFType, Pin};
use crate::gpio::{AnyPin, OutputType};
use crate::time::Hertz;
use crate::Peripheral;

/// Complementary PWM pin wrapper.
///
/// This wraps a pin to make it usable with PWM.
pub struct ComplementaryPwmPin<'d, T, C> {
    _pin: PeripheralRef<'d, AnyPin>,
    phantom: PhantomData<(T, C)>,
}

macro_rules! complementary_channel_impl {
    ($new_chx:ident, $channel:ident, $pin_trait:ident) => {
        impl<'d, T: CaptureCompare16bitInstance> ComplementaryPwmPin<'d, T, $channel> {
            #[doc = concat!("Create a new ", stringify!($channel), " complementary PWM pin instance.")]
            pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd, output_type: OutputType) -> Self {
                into_ref!(pin);
                critical_section::with(|_| {
                    pin.set_low();
                    pin.set_as_af(pin.af_num(), output_type.into());
                    #[cfg(gpio_v2)]
                    pin.set_speed(crate::gpio::Speed::VeryHigh);
                });
                ComplementaryPwmPin {
                    _pin: pin.map_into(),
                    phantom: PhantomData,
                }
            }
        }
    };
}

complementary_channel_impl!(new_ch1, Ch1, Channel1ComplementaryPin);
complementary_channel_impl!(new_ch2, Ch2, Channel2ComplementaryPin);
complementary_channel_impl!(new_ch3, Ch3, Channel3ComplementaryPin);
complementary_channel_impl!(new_ch4, Ch4, Channel4ComplementaryPin);

/// PWM driver with support for standard and complementary outputs.
pub struct ComplementaryPwm<'d, T> {
    inner: PeripheralRef<'d, T>,
}

impl<'d, T: ComplementaryCaptureCompare16bitInstance> ComplementaryPwm<'d, T> {
    /// Create a new complementary PWM driver.
    pub fn new(
        tim: impl Peripheral<P = T> + 'd,
        _ch1: Option<PwmPin<'d, T, Ch1>>,
        _ch1n: Option<ComplementaryPwmPin<'d, T, Ch1>>,
        _ch2: Option<PwmPin<'d, T, Ch2>>,
        _ch2n: Option<ComplementaryPwmPin<'d, T, Ch2>>,
        _ch3: Option<PwmPin<'d, T, Ch3>>,
        _ch3n: Option<ComplementaryPwmPin<'d, T, Ch3>>,
        _ch4: Option<PwmPin<'d, T, Ch4>>,
        _ch4n: Option<ComplementaryPwmPin<'d, T, Ch4>>,
        freq: Hertz,
        counting_mode: CountingMode,
    ) -> Self {
        Self::new_inner(tim, freq, counting_mode)
    }

    fn new_inner(tim: impl Peripheral<P = T> + 'd, freq: Hertz, counting_mode: CountingMode) -> Self {
        into_ref!(tim);

        T::enable_and_reset();

        let mut this = Self { inner: tim };

        this.inner.set_counting_mode(counting_mode);
        this.set_frequency(freq);
        this.inner.start();

        this.inner.enable_outputs();

        this.inner
            .set_output_compare_mode(Channel::Ch1, OutputCompareMode::PwmMode1);
        this.inner
            .set_output_compare_mode(Channel::Ch2, OutputCompareMode::PwmMode1);
        this.inner
            .set_output_compare_mode(Channel::Ch3, OutputCompareMode::PwmMode1);
        this.inner
            .set_output_compare_mode(Channel::Ch4, OutputCompareMode::PwmMode1);
        this
    }

    /// Enable the given channel.
    pub fn enable(&mut self, channel: Channel) {
        self.inner.enable_channel(channel, true);
        self.inner.enable_complementary_channel(channel, true);
    }

    /// Disable the given channel.
    pub fn disable(&mut self, channel: Channel) {
        self.inner.enable_complementary_channel(channel, false);
        self.inner.enable_channel(channel, false);
    }

    /// Set PWM frequency.
    ///
    /// Note: when you call this, the max duty value changes, so you will have to
    /// call `set_duty` on all channels with the duty calculated based on the new max duty.
    pub fn set_frequency(&mut self, freq: Hertz) {
        let multiplier = if self.inner.get_counting_mode().is_center_aligned() {
            2u8
        } else {
            1u8
        };
        self.inner.set_frequency(freq * multiplier);
    }

    /// Get max duty value.
    ///
    /// This value depends on the configured frequency and the timer's clock rate from RCC.
    pub fn get_max_duty(&self) -> u16 {
        self.inner.get_max_compare_value() + 1
    }

    /// Set the duty for a given channel.
    ///
    /// The value ranges from 0 for 0% duty, to [`get_max_duty`](Self::get_max_duty) for 100% duty, both included.
    pub fn set_duty(&mut self, channel: Channel, duty: u16) {
        assert!(duty <= self.get_max_duty());
        self.inner.set_compare_value(channel, duty)
    }

    /// Set the output polarity for a given channel.
    pub fn set_polarity(&mut self, channel: Channel, polarity: OutputPolarity) {
        self.inner.set_output_polarity(channel, polarity);
        self.inner.set_complementary_output_polarity(channel, polarity);
    }

    /// Set the dead time as a proportion of max_duty
    pub fn set_dead_time(&mut self, value: u16) {
        let (ckd, value) = compute_dead_time_value(value);

        self.inner.set_dead_time_clock_division(ckd);
        self.inner.set_dead_time_value(value);
    }
}

impl<'d, T: ComplementaryCaptureCompare16bitInstance> embedded_hal_02::Pwm for ComplementaryPwm<'d, T> {
    type Channel = Channel;
    type Time = Hertz;
    type Duty = u16;

    fn disable(&mut self, channel: Self::Channel) {
        self.inner.enable_complementary_channel(channel, false);
        self.inner.enable_channel(channel, false);
    }

    fn enable(&mut self, channel: Self::Channel) {
        self.inner.enable_channel(channel, true);
        self.inner.enable_complementary_channel(channel, true);
    }

    fn get_period(&self) -> Self::Time {
        self.inner.get_frequency().into()
    }

    fn get_duty(&self, channel: Self::Channel) -> Self::Duty {
        self.inner.get_compare_value(channel)
    }

    fn get_max_duty(&self) -> Self::Duty {
        self.inner.get_max_compare_value() + 1
    }

    fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty) {
        assert!(duty <= self.get_max_duty());
        self.inner.set_compare_value(channel, duty)
    }

    fn set_period<P>(&mut self, period: P)
    where
        P: Into<Self::Time>,
    {
        self.inner.set_frequency(period.into());
    }
}

fn compute_dead_time_value(value: u16) -> (Ckd, u8) {
    /*
        Dead-time = T_clk * T_dts * T_dtg

        T_dts:
        This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
        dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters
        (ETR, TIx),
        00: tDTS=tCK_INT
        01: tDTS=2*tCK_INT
        10: tDTS=4*tCK_INT

        T_dtg:
        This bit-field defines the duration of the dead-time inserted between the complementary
        outputs. DT correspond to this duration.
        DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS.
        DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS.
        DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS.
        DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS.
        Example if TDTS=125ns (8MHz), dead-time possible values are:
        0 to 15875 ns by 125 ns steps,
        16 us to 31750 ns by 250 ns steps,
        32 us to 63us by 1 us steps,
        64 us to 126 us by 2 us steps
    */

    let mut error = u16::MAX;
    let mut ckd = Ckd::DIV1;
    let mut bits = 0u8;

    for this_ckd in [Ckd::DIV1, Ckd::DIV2, Ckd::DIV4] {
        let outdiv = match this_ckd {
            Ckd::DIV1 => 1,
            Ckd::DIV2 => 2,
            Ckd::DIV4 => 4,
            _ => unreachable!(),
        };

        // 127
        // 128
        // ..
        // 254
        // 256
        // ..
        // 504
        // 512
        // ..
        // 1008

        let target = value / outdiv;
        let (these_bits, result) = if target < 128 {
            (target as u8, target)
        } else if target < 255 {
            (64 + (target / 2) as u8, (target - target % 2))
        } else if target < 508 {
            (32 + (target / 8) as u8, (target - target % 8))
        } else if target < 1008 {
            (32 + (target / 16) as u8, (target - target % 16))
        } else {
            (u8::MAX, 1008)
        };

        let this_error = value.abs_diff(result * outdiv);
        if error > this_error {
            ckd = this_ckd;
            bits = these_bits;
            error = this_error;
        }

        if error == 0 {
            break;
        }
    }

    (ckd, bits)
}

#[cfg(test)]
mod tests {
    use super::{compute_dead_time_value, Ckd};

    #[test]
    fn test_compute_dead_time_value() {
        struct TestRun {
            value: u16,
            ckd: Ckd,
            bits: u8,
        }

        let fn_results = [
            TestRun {
                value: 1,
                ckd: Ckd::DIV1,
                bits: 1,
            },
            TestRun {
                value: 125,
                ckd: Ckd::DIV1,
                bits: 125,
            },
            TestRun {
                value: 245,
                ckd: Ckd::DIV1,
                bits: 64 + 245 / 2,
            },
            TestRun {
                value: 255,
                ckd: Ckd::DIV2,
                bits: 127,
            },
            TestRun {
                value: 400,
                ckd: Ckd::DIV1,
                bits: 32 + (400u16 / 8) as u8,
            },
            TestRun {
                value: 600,
                ckd: Ckd::DIV4,
                bits: 64 + (600u16 / 8) as u8,
            },
        ];

        for test_run in fn_results {
            let (ckd, bits) = compute_dead_time_value(test_run.value);

            assert_eq!(ckd.to_bits(), test_run.ckd.to_bits());
            assert_eq!(bits, test_run.bits);
        }
    }
}