1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//! Simple PWM driver.

use core::marker::PhantomData;

use embassy_hal_internal::{into_ref, PeripheralRef};

use super::*;
#[allow(unused_imports)]
use crate::gpio::sealed::{AFType, Pin};
use crate::gpio::{AnyPin, OutputType};
use crate::time::Hertz;
use crate::Peripheral;

/// Channel 1 marker type.
pub enum Ch1 {}
/// Channel 2 marker type.
pub enum Ch2 {}
/// Channel 3 marker type.
pub enum Ch3 {}
/// Channel 4 marker type.
pub enum Ch4 {}

/// PWM pin wrapper.
///
/// This wraps a pin to make it usable with PWM.
pub struct PwmPin<'d, T, C> {
    _pin: PeripheralRef<'d, AnyPin>,
    phantom: PhantomData<(T, C)>,
}

macro_rules! channel_impl {
    ($new_chx:ident, $channel:ident, $pin_trait:ident) => {
        impl<'d, T: CaptureCompare16bitInstance> PwmPin<'d, T, $channel> {
            #[doc = concat!("Create a new ", stringify!($channel), " PWM pin instance.")]
            pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd, output_type: OutputType) -> Self {
                into_ref!(pin);
                critical_section::with(|_| {
                    pin.set_low();
                    pin.set_as_af(pin.af_num(), output_type.into());
                    #[cfg(gpio_v2)]
                    pin.set_speed(crate::gpio::Speed::VeryHigh);
                });
                PwmPin {
                    _pin: pin.map_into(),
                    phantom: PhantomData,
                }
            }
        }
    };
}

channel_impl!(new_ch1, Ch1, Channel1Pin);
channel_impl!(new_ch2, Ch2, Channel2Pin);
channel_impl!(new_ch3, Ch3, Channel3Pin);
channel_impl!(new_ch4, Ch4, Channel4Pin);

/// Simple PWM driver.
pub struct SimplePwm<'d, T> {
    inner: PeripheralRef<'d, T>,
}

impl<'d, T: CaptureCompare16bitInstance> SimplePwm<'d, T> {
    /// Create a new simple PWM driver.
    pub fn new(
        tim: impl Peripheral<P = T> + 'd,
        _ch1: Option<PwmPin<'d, T, Ch1>>,
        _ch2: Option<PwmPin<'d, T, Ch2>>,
        _ch3: Option<PwmPin<'d, T, Ch3>>,
        _ch4: Option<PwmPin<'d, T, Ch4>>,
        freq: Hertz,
        counting_mode: CountingMode,
    ) -> Self {
        Self::new_inner(tim, freq, counting_mode)
    }

    fn new_inner(tim: impl Peripheral<P = T> + 'd, freq: Hertz, counting_mode: CountingMode) -> Self {
        into_ref!(tim);

        T::enable_and_reset();

        let mut this = Self { inner: tim };

        this.inner.set_counting_mode(counting_mode);
        this.set_frequency(freq);
        this.inner.start();

        this.inner.enable_outputs();

        [Channel::Ch1, Channel::Ch2, Channel::Ch3, Channel::Ch4]
            .iter()
            .for_each(|&channel| {
                this.inner.set_output_compare_mode(channel, OutputCompareMode::PwmMode1);
                this.inner.set_output_compare_preload(channel, true)
            });

        this
    }

    /// Enable the given channel.
    pub fn enable(&mut self, channel: Channel) {
        self.inner.enable_channel(channel, true);
    }

    /// Disable the given channel.
    pub fn disable(&mut self, channel: Channel) {
        self.inner.enable_channel(channel, false);
    }

    /// Check whether given channel is enabled
    pub fn is_enabled(&self, channel: Channel) -> bool {
        self.inner.get_channel_enable_state(channel)
    }

    /// Set PWM frequency.
    ///
    /// Note: when you call this, the max duty value changes, so you will have to
    /// call `set_duty` on all channels with the duty calculated based on the new max duty.
    pub fn set_frequency(&mut self, freq: Hertz) {
        let multiplier = if self.inner.get_counting_mode().is_center_aligned() {
            2u8
        } else {
            1u8
        };
        self.inner.set_frequency(freq * multiplier);
    }

    /// Get max duty value.
    ///
    /// This value depends on the configured frequency and the timer's clock rate from RCC.
    pub fn get_max_duty(&self) -> u16 {
        self.inner.get_max_compare_value() + 1
    }

    /// Set the duty for a given channel.
    ///
    /// The value ranges from 0 for 0% duty, to [`get_max_duty`](Self::get_max_duty) for 100% duty, both included.
    pub fn set_duty(&mut self, channel: Channel, duty: u16) {
        assert!(duty <= self.get_max_duty());
        self.inner.set_compare_value(channel, duty)
    }

    /// Get the duty for a given channel.
    ///
    /// The value ranges from 0 for 0% duty, to [`get_max_duty`](Self::get_max_duty) for 100% duty, both included.
    pub fn get_duty(&self, channel: Channel) -> u16 {
        self.inner.get_compare_value(channel)
    }

    /// Set the output polarity for a given channel.
    pub fn set_polarity(&mut self, channel: Channel, polarity: OutputPolarity) {
        self.inner.set_output_polarity(channel, polarity);
    }

    /// Generate a sequence of PWM waveform
    ///
    /// Note:  
    /// you will need to provide corresponding TIMx_UP DMA channel to use this method.
    pub async fn gen_waveform(
        &mut self,
        dma: impl Peripheral<P = impl super::UpDma<T>>,
        channel: Channel,
        duty: &[u16],
    ) {
        assert!(duty.iter().all(|v| *v <= self.get_max_duty()));

        into_ref!(dma);

        #[allow(clippy::let_unit_value)] // eg. stm32f334
        let req = dma.request();

        let original_duty_state = self.get_duty(channel);
        let original_enable_state = self.is_enabled(channel);
        let original_update_dma_state = self.inner.get_update_dma_state();

        if !original_update_dma_state {
            self.inner.enable_update_dma(true);
        }

        if !original_enable_state {
            self.enable(channel);
        }

        unsafe {
            #[cfg(not(any(bdma, gpdma)))]
            use crate::dma::{Burst, FifoThreshold};
            use crate::dma::{Transfer, TransferOptions};

            let dma_transfer_option = TransferOptions {
                #[cfg(not(any(bdma, gpdma)))]
                fifo_threshold: Some(FifoThreshold::Full),
                #[cfg(not(any(bdma, gpdma)))]
                mburst: Burst::Incr8,
                ..Default::default()
            };

            Transfer::new_write(
                &mut dma,
                req,
                duty,
                T::regs_gp16().ccr(channel.index()).as_ptr() as *mut _,
                dma_transfer_option,
            )
            .await
        };

        // restore output compare state
        if !original_enable_state {
            self.disable(channel);
        }

        self.set_duty(channel, original_duty_state);

        // Since DMA is closed before timer update event trigger DMA is turn off,
        // this can almost always trigger a DMA FIFO error.
        //
        // optional TODO:
        // clean FEIF after disable UDE
        if !original_update_dma_state {
            self.inner.enable_update_dma(false);
        }
    }
}

impl<'d, T: CaptureCompare16bitInstance> embedded_hal_02::Pwm for SimplePwm<'d, T> {
    type Channel = Channel;
    type Time = Hertz;
    type Duty = u16;

    fn disable(&mut self, channel: Self::Channel) {
        self.inner.enable_channel(channel, false);
    }

    fn enable(&mut self, channel: Self::Channel) {
        self.inner.enable_channel(channel, true);
    }

    fn get_period(&self) -> Self::Time {
        self.inner.get_frequency().into()
    }

    fn get_duty(&self, channel: Self::Channel) -> Self::Duty {
        self.inner.get_compare_value(channel)
    }

    fn get_max_duty(&self) -> Self::Duty {
        self.inner.get_max_compare_value() + 1
    }

    fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty) {
        assert!(duty <= self.get_max_duty());
        self.inner.set_compare_value(channel, duty)
    }

    fn set_period<P>(&mut self, period: P)
    where
        P: Into<Self::Time>,
    {
        self.inner.set_frequency(period.into());
    }
}