1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
//! Universal Synchronous/Asynchronous Receiver Transmitter (USART, UART, LPUART)
#![macro_use]
#![warn(missing_docs)]

use core::future::poll_fn;
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;

use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use futures::future::{select, Either};

use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::interrupt::typelevel::Interrupt;
#[allow(unused_imports)]
#[cfg(not(any(usart_v1, usart_v2)))]
use crate::pac::usart::regs::Isr as Sr;
#[cfg(any(usart_v1, usart_v2))]
use crate::pac::usart::regs::Sr;
#[cfg(not(any(usart_v1, usart_v2)))]
use crate::pac::usart::Lpuart as Regs;
#[cfg(any(usart_v1, usart_v2))]
use crate::pac::usart::Usart as Regs;
use crate::pac::usart::{regs, vals};
use crate::time::Hertz;
use crate::{interrupt, peripherals, Peripheral};

/// Interrupt handler.
pub struct InterruptHandler<T: BasicInstance> {
    _phantom: PhantomData<T>,
}

impl<T: BasicInstance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
    unsafe fn on_interrupt() {
        let r = T::regs();
        let s = T::state();

        let (sr, cr1, cr3) = (sr(r).read(), r.cr1().read(), r.cr3().read());

        let has_errors = (sr.pe() && cr1.peie()) || ((sr.fe() || sr.ne() || sr.ore()) && cr3.eie());
        if has_errors {
            // clear all interrupts and DMA Rx Request
            r.cr1().modify(|w| {
                // disable RXNE interrupt
                w.set_rxneie(false);
                // disable parity interrupt
                w.set_peie(false);
                // disable idle line interrupt
                w.set_idleie(false);
            });
            r.cr3().modify(|w| {
                // disable Error Interrupt: (Frame error, Noise error, Overrun error)
                w.set_eie(false);
                // disable DMA Rx Request
                w.set_dmar(false);
            });
        } else if cr1.idleie() && sr.idle() {
            // IDLE detected: no more data will come
            r.cr1().modify(|w| {
                // disable idle line detection
                w.set_idleie(false);
            });
        } else if cr1.rxneie() {
            // We cannot check the RXNE flag as it is auto-cleared by the DMA controller

            // It is up to the listener to determine if this in fact was a RX event and disable the RXNE detection
        } else {
            return;
        }

        compiler_fence(Ordering::SeqCst);
        s.rx_waker.wake();
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Number of data bits
pub enum DataBits {
    /// 8 Data Bits
    DataBits8,
    /// 9 Data Bits
    DataBits9,
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Parity
pub enum Parity {
    /// No parity
    ParityNone,
    /// Even Parity
    ParityEven,
    /// Odd Parity
    ParityOdd,
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Number of stop bits
pub enum StopBits {
    #[doc = "1 stop bit"]
    STOP1,
    #[doc = "0.5 stop bits"]
    STOP0P5,
    #[doc = "2 stop bits"]
    STOP2,
    #[doc = "1.5 stop bits"]
    STOP1P5,
}

#[non_exhaustive]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Config Error
pub enum ConfigError {
    /// Baudrate too low
    BaudrateTooLow,
    /// Baudrate too high
    BaudrateTooHigh,
    /// Rx or Tx not enabled
    RxOrTxNotEnabled,
}

#[non_exhaustive]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// Config
pub struct Config {
    /// Baud rate
    pub baudrate: u32,
    /// Number of data bits
    pub data_bits: DataBits,
    /// Number of stop bits
    pub stop_bits: StopBits,
    /// Parity type
    pub parity: Parity,

    /// If true: on a read-like method, if there is a latent error pending,
    /// the read will abort and the error will be reported and cleared
    ///
    /// If false: the error is ignored and cleared
    pub detect_previous_overrun: bool,

    /// Set this to true if the line is considered noise free.
    /// This will increase the receiver’s tolerance to clock deviations,
    /// but will effectively disable noise detection.
    #[cfg(not(usart_v1))]
    pub assume_noise_free: bool,

    /// Set this to true to swap the RX and TX pins.
    #[cfg(any(usart_v3, usart_v4))]
    pub swap_rx_tx: bool,

    /// Set this to true to invert TX pin signal values (V<sub>DD</sub> =0/mark, Gnd = 1/idle).
    #[cfg(any(usart_v3, usart_v4))]
    pub invert_tx: bool,

    /// Set this to true to invert RX pin signal values (V<sub>DD</sub> =0/mark, Gnd = 1/idle).
    #[cfg(any(usart_v3, usart_v4))]
    pub invert_rx: bool,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            baudrate: 115200,
            data_bits: DataBits::DataBits8,
            stop_bits: StopBits::STOP1,
            parity: Parity::ParityNone,
            // historical behavior
            detect_previous_overrun: false,
            #[cfg(not(usart_v1))]
            assume_noise_free: false,
            #[cfg(any(usart_v3, usart_v4))]
            swap_rx_tx: false,
            #[cfg(any(usart_v3, usart_v4))]
            invert_tx: false,
            #[cfg(any(usart_v3, usart_v4))]
            invert_rx: false,
        }
    }
}

/// Serial error
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
    /// Framing error
    Framing,
    /// Noise error
    Noise,
    /// RX buffer overrun
    Overrun,
    /// Parity check error
    Parity,
    /// Buffer too large for DMA
    BufferTooLong,
}

enum ReadCompletionEvent {
    // DMA Read transfer completed first
    DmaCompleted,
    // Idle line detected first
    Idle(usize),
}

/// Bidirectional UART Driver
pub struct Uart<'d, T: BasicInstance, TxDma = NoDma, RxDma = NoDma> {
    tx: UartTx<'d, T, TxDma>,
    rx: UartRx<'d, T, RxDma>,
}

impl<'d, T: BasicInstance, TxDma, RxDma> SetConfig for Uart<'d, T, TxDma, RxDma> {
    type Config = Config;
    type ConfigError = ConfigError;

    fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
        self.tx.set_config(config)?;
        self.rx.set_config(config)
    }
}

/// Tx-only UART Driver
pub struct UartTx<'d, T: BasicInstance, TxDma = NoDma> {
    phantom: PhantomData<&'d mut T>,
    tx_dma: PeripheralRef<'d, TxDma>,
}

impl<'d, T: BasicInstance, TxDma> SetConfig for UartTx<'d, T, TxDma> {
    type Config = Config;
    type ConfigError = ConfigError;

    fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
        self.set_config(config)
    }
}

/// Rx-only UART Driver
pub struct UartRx<'d, T: BasicInstance, RxDma = NoDma> {
    _peri: PeripheralRef<'d, T>,
    rx_dma: PeripheralRef<'d, RxDma>,
    detect_previous_overrun: bool,
    #[cfg(any(usart_v1, usart_v2))]
    buffered_sr: stm32_metapac::usart::regs::Sr,
}

impl<'d, T: BasicInstance, RxDma> SetConfig for UartRx<'d, T, RxDma> {
    type Config = Config;
    type ConfigError = ConfigError;

    fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> {
        self.set_config(config)
    }
}

impl<'d, T: BasicInstance, TxDma> UartTx<'d, T, TxDma> {
    /// Useful if you only want Uart Tx. It saves 1 pin and consumes a little less power.
    pub fn new(
        peri: impl Peripheral<P = T> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        T::enable_and_reset();

        Self::new_inner(peri, tx, tx_dma, config)
    }

    /// Create a new tx-only UART with a clear-to-send pin
    pub fn new_with_cts(
        peri: impl Peripheral<P = T> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(cts);

        T::enable_and_reset();

        cts.set_as_af(cts.af_num(), AFType::Input);
        T::regs().cr3().write(|w| {
            w.set_ctse(true);
        });
        Self::new_inner(peri, tx, tx_dma, config)
    }

    fn new_inner(
        _peri: impl Peripheral<P = T> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(_peri, tx, tx_dma);

        let r = T::regs();

        tx.set_as_af(tx.af_num(), AFType::OutputPushPull);

        configure(r, &config, T::frequency(), T::KIND, false, true)?;

        // create state once!
        let _s = T::state();

        Ok(Self {
            tx_dma,
            phantom: PhantomData,
        })
    }

    /// Reconfigure the driver
    pub fn set_config(&mut self, config: &Config) -> Result<(), ConfigError> {
        reconfigure::<T>(config)
    }

    /// Initiate an asynchronous UART write
    pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error>
    where
        TxDma: crate::usart::TxDma<T>,
    {
        let ch = &mut self.tx_dma;
        let request = ch.request();
        T::regs().cr3().modify(|reg| {
            reg.set_dmat(true);
        });
        // If we don't assign future to a variable, the data register pointer
        // is held across an await and makes the future non-Send.
        let transfer = unsafe { Transfer::new_write(ch, request, buffer, tdr(T::regs()), Default::default()) };
        transfer.await;
        Ok(())
    }

    /// Perform a blocking UART write
    pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
        let r = T::regs();
        for &b in buffer {
            while !sr(r).read().txe() {}
            unsafe { tdr(r).write_volatile(b) };
        }
        Ok(())
    }

    /// Block until transmission complete
    pub fn blocking_flush(&mut self) -> Result<(), Error> {
        let r = T::regs();
        while !sr(r).read().tc() {}
        Ok(())
    }
}

impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
    /// Useful if you only want Uart Rx. It saves 1 pin and consumes a little less power.
    pub fn new(
        peri: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        T::enable_and_reset();

        Self::new_inner(peri, rx, rx_dma, config)
    }

    /// Create a new rx-only UART with a request-to-send pin
    pub fn new_with_rts(
        peri: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(rts);

        T::enable_and_reset();

        rts.set_as_af(rts.af_num(), AFType::OutputPushPull);
        T::regs().cr3().write(|w| {
            w.set_rtse(true);
        });

        Self::new_inner(peri, rx, rx_dma, config)
    }

    fn new_inner(
        peri: impl Peripheral<P = T> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(peri, rx, rx_dma);

        let r = T::regs();

        rx.set_as_af(rx.af_num(), AFType::Input);

        configure(r, &config, T::frequency(), T::KIND, true, false)?;

        T::Interrupt::unpend();
        unsafe { T::Interrupt::enable() };

        // create state once!
        let _s = T::state();

        Ok(Self {
            _peri: peri,
            rx_dma,
            detect_previous_overrun: config.detect_previous_overrun,
            #[cfg(any(usart_v1, usart_v2))]
            buffered_sr: stm32_metapac::usart::regs::Sr(0),
        })
    }

    /// Reconfigure the driver
    pub fn set_config(&mut self, config: &Config) -> Result<(), ConfigError> {
        reconfigure::<T>(config)
    }

    #[cfg(any(usart_v1, usart_v2))]
    fn check_rx_flags(&mut self) -> Result<bool, Error> {
        let r = T::regs();
        loop {
            // Handle all buffered error flags.
            if self.buffered_sr.pe() {
                self.buffered_sr.set_pe(false);
                return Err(Error::Parity);
            } else if self.buffered_sr.fe() {
                self.buffered_sr.set_fe(false);
                return Err(Error::Framing);
            } else if self.buffered_sr.ne() {
                self.buffered_sr.set_ne(false);
                return Err(Error::Noise);
            } else if self.buffered_sr.ore() {
                self.buffered_sr.set_ore(false);
                return Err(Error::Overrun);
            } else if self.buffered_sr.rxne() {
                self.buffered_sr.set_rxne(false);
                return Ok(true);
            } else {
                // No error flags from previous iterations were set: Check the actual status register
                let sr = r.sr().read();
                if !sr.rxne() {
                    return Ok(false);
                }

                // Buffer the status register and let the loop handle the error flags.
                self.buffered_sr = sr;
            }
        }
    }

    #[cfg(any(usart_v3, usart_v4))]
    fn check_rx_flags(&mut self) -> Result<bool, Error> {
        let r = T::regs();
        let sr = r.isr().read();
        if sr.pe() {
            r.icr().write(|w| w.set_pe(true));
            return Err(Error::Parity);
        } else if sr.fe() {
            r.icr().write(|w| w.set_fe(true));
            return Err(Error::Framing);
        } else if sr.ne() {
            r.icr().write(|w| w.set_ne(true));
            return Err(Error::Noise);
        } else if sr.ore() {
            r.icr().write(|w| w.set_ore(true));
            return Err(Error::Overrun);
        }
        Ok(sr.rxne())
    }

    /// Initiate an asynchronous UART read
    pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error>
    where
        RxDma: crate::usart::RxDma<T>,
    {
        self.inner_read(buffer, false).await?;

        Ok(())
    }

    /// Read a single u8 if there is one available, otherwise return WouldBlock
    pub fn nb_read(&mut self) -> Result<u8, nb::Error<Error>> {
        let r = T::regs();
        if self.check_rx_flags()? {
            Ok(unsafe { rdr(r).read_volatile() })
        } else {
            Err(nb::Error::WouldBlock)
        }
    }

    /// Perform a blocking read into `buffer`
    pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
        let r = T::regs();
        for b in buffer {
            while !self.check_rx_flags()? {}
            unsafe { *b = rdr(r).read_volatile() }
        }
        Ok(())
    }

    /// Initiate an asynchronous read with idle line detection enabled
    pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error>
    where
        RxDma: crate::usart::RxDma<T>,
    {
        self.inner_read(buffer, true).await
    }

    async fn inner_read_run(
        &mut self,
        buffer: &mut [u8],
        enable_idle_line_detection: bool,
    ) -> Result<ReadCompletionEvent, Error>
    where
        RxDma: crate::usart::RxDma<T>,
    {
        let r = T::regs();

        // make sure USART state is restored to neutral state when this future is dropped
        let on_drop = OnDrop::new(move || {
            // defmt::trace!("Clear all USART interrupts and DMA Read Request");
            // clear all interrupts and DMA Rx Request
            r.cr1().modify(|w| {
                // disable RXNE interrupt
                w.set_rxneie(false);
                // disable parity interrupt
                w.set_peie(false);
                // disable idle line interrupt
                w.set_idleie(false);
            });
            r.cr3().modify(|w| {
                // disable Error Interrupt: (Frame error, Noise error, Overrun error)
                w.set_eie(false);
                // disable DMA Rx Request
                w.set_dmar(false);
            });
        });

        let ch = &mut self.rx_dma;
        let request = ch.request();

        let buffer_len = buffer.len();

        // Start USART DMA
        // will not do anything yet because DMAR is not yet set
        // future which will complete when DMA Read request completes
        let transfer = unsafe { Transfer::new_read(ch, request, rdr(T::regs()), buffer, Default::default()) };

        // clear ORE flag just before enabling DMA Rx Request: can be mandatory for the second transfer
        if !self.detect_previous_overrun {
            let sr = sr(r).read();
            // This read also clears the error and idle interrupt flags on v1.
            unsafe { rdr(r).read_volatile() };
            clear_interrupt_flags(r, sr);
        }

        r.cr1().modify(|w| {
            // disable RXNE interrupt
            w.set_rxneie(false);
            // enable parity interrupt if not ParityNone
            w.set_peie(w.pce());
        });

        r.cr3().modify(|w| {
            // enable Error Interrupt: (Frame error, Noise error, Overrun error)
            w.set_eie(true);
            // enable DMA Rx Request
            w.set_dmar(true);
        });

        compiler_fence(Ordering::SeqCst);

        // In case of errors already pending when reception started, interrupts may have already been raised
        // and lead to reception abortion (Overrun error for instance). In such a case, all interrupts
        // have been disabled in interrupt handler and DMA Rx Request has been disabled.

        let cr3 = r.cr3().read();

        if !cr3.dmar() {
            // something went wrong
            // because the only way to get this flag cleared is to have an interrupt

            // DMA will be stopped when transfer is dropped

            let sr = sr(r).read();
            // This read also clears the error and idle interrupt flags on v1.
            unsafe { rdr(r).read_volatile() };
            clear_interrupt_flags(r, sr);

            if sr.pe() {
                return Err(Error::Parity);
            }
            if sr.fe() {
                return Err(Error::Framing);
            }
            if sr.ne() {
                return Err(Error::Noise);
            }
            if sr.ore() {
                return Err(Error::Overrun);
            }

            unreachable!();
        }

        if enable_idle_line_detection {
            // clear idle flag
            let sr = sr(r).read();
            // This read also clears the error and idle interrupt flags on v1.
            unsafe { rdr(r).read_volatile() };
            clear_interrupt_flags(r, sr);

            // enable idle interrupt
            r.cr1().modify(|w| {
                w.set_idleie(true);
            });
        }

        compiler_fence(Ordering::SeqCst);

        // future which completes when idle line or error is detected
        let abort = poll_fn(move |cx| {
            let s = T::state();

            s.rx_waker.register(cx.waker());

            let sr = sr(r).read();

            // This read also clears the error and idle interrupt flags on v1.
            unsafe { rdr(r).read_volatile() };
            clear_interrupt_flags(r, sr);

            if enable_idle_line_detection {
                // enable idle interrupt
                r.cr1().modify(|w| {
                    w.set_idleie(true);
                });
            }

            compiler_fence(Ordering::SeqCst);

            let has_errors = sr.pe() || sr.fe() || sr.ne() || sr.ore();

            if has_errors {
                // all Rx interrupts and Rx DMA Request have already been cleared in interrupt handler

                if sr.pe() {
                    return Poll::Ready(Err(Error::Parity));
                }
                if sr.fe() {
                    return Poll::Ready(Err(Error::Framing));
                }
                if sr.ne() {
                    return Poll::Ready(Err(Error::Noise));
                }
                if sr.ore() {
                    return Poll::Ready(Err(Error::Overrun));
                }
            }

            if enable_idle_line_detection && sr.idle() {
                // Idle line detected
                return Poll::Ready(Ok(()));
            }

            Poll::Pending
        });

        // wait for the first of DMA request or idle line detected to completes
        // select consumes its arguments
        // when transfer is dropped, it will stop the DMA request
        let r = match select(transfer, abort).await {
            // DMA transfer completed first
            Either::Left(((), _)) => Ok(ReadCompletionEvent::DmaCompleted),

            // Idle line detected first
            Either::Right((Ok(()), transfer)) => Ok(ReadCompletionEvent::Idle(
                buffer_len - transfer.get_remaining_transfers() as usize,
            )),

            // error occurred
            Either::Right((Err(e), _)) => Err(e),
        };

        drop(on_drop);

        r
    }

    async fn inner_read(&mut self, buffer: &mut [u8], enable_idle_line_detection: bool) -> Result<usize, Error>
    where
        RxDma: crate::usart::RxDma<T>,
    {
        if buffer.is_empty() {
            return Ok(0);
        } else if buffer.len() > 0xFFFF {
            return Err(Error::BufferTooLong);
        }

        let buffer_len = buffer.len();

        // wait for DMA to complete or IDLE line detection if requested
        let res = self.inner_read_run(buffer, enable_idle_line_detection).await;

        match res {
            Ok(ReadCompletionEvent::DmaCompleted) => Ok(buffer_len),
            Ok(ReadCompletionEvent::Idle(n)) => Ok(n),
            Err(e) => Err(e),
        }
    }
}

impl<'d, T: BasicInstance, TxDma> Drop for UartTx<'d, T, TxDma> {
    fn drop(&mut self) {
        T::disable();
    }
}

impl<'d, T: BasicInstance, TxDma> Drop for UartRx<'d, T, TxDma> {
    fn drop(&mut self) {
        T::disable();
    }
}

impl<'d, T: BasicInstance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> {
    /// Create a new bidirectional UART
    pub fn new(
        peri: impl Peripheral<P = T> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        // UartRx and UartTx have one refcount ea.
        T::enable_and_reset();
        T::enable_and_reset();

        Self::new_inner_configure(peri, rx, tx, tx_dma, rx_dma, config)
    }

    /// Create a new bidirectional UART with request-to-send and clear-to-send pins
    pub fn new_with_rtscts(
        peri: impl Peripheral<P = T> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
        cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(cts, rts);

        // UartRx and UartTx have one refcount ea.
        T::enable_and_reset();
        T::enable_and_reset();

        rts.set_as_af(rts.af_num(), AFType::OutputPushPull);
        cts.set_as_af(cts.af_num(), AFType::Input);
        T::regs().cr3().write(|w| {
            w.set_rtse(true);
            w.set_ctse(true);
        });
        Self::new_inner_configure(peri, rx, tx, tx_dma, rx_dma, config)
    }

    #[cfg(not(any(usart_v1, usart_v2)))]
    /// Create a new bidirectional UART with a driver-enable pin
    pub fn new_with_de(
        peri: impl Peripheral<P = T> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        de: impl Peripheral<P = impl DePin<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(de);

        // UartRx and UartTx have one refcount ea.
        T::enable_and_reset();
        T::enable_and_reset();

        de.set_as_af(de.af_num(), AFType::OutputPushPull);
        T::regs().cr3().write(|w| {
            w.set_dem(true);
        });
        Self::new_inner_configure(peri, rx, tx, tx_dma, rx_dma, config)
    }

    /// Create a single-wire half-duplex Uart transceiver on a single Tx pin.
    ///
    /// See [`new_half_duplex_on_rx`][`Self::new_half_duplex_on_rx`] if you would prefer to use an Rx pin.
    /// There is no functional difference between these methods, as both allow bidirectional communication.
    ///
    /// The pin is always released when no data is transmitted. Thus, it acts as a standard
    /// I/O in idle or in reception.
    /// Apart from this, the communication protocol is similar to normal USART mode. Any conflict
    /// on the line must be managed by software (for instance by using a centralized arbiter).
    #[cfg(not(any(usart_v1, usart_v2)))]
    #[doc(alias("HDSEL"))]
    pub fn new_half_duplex(
        peri: impl Peripheral<P = T> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        mut config: Config,
    ) -> Result<Self, ConfigError> {
        // UartRx and UartTx have one refcount ea.
        T::enable_and_reset();
        T::enable_and_reset();

        config.swap_rx_tx = false;

        into_ref!(peri, tx, tx_dma, rx_dma);

        T::regs().cr3().write(|w| w.set_hdsel(true));
        tx.set_as_af(tx.af_num(), AFType::OutputPushPull);

        Self::new_inner(peri, tx_dma, rx_dma, config)
    }

    /// Create a single-wire half-duplex Uart transceiver on a single Rx pin.
    ///
    /// See [`new_half_duplex`][`Self::new_half_duplex`] if you would prefer to use an Tx pin.
    /// There is no functional difference between these methods, as both allow bidirectional communication.
    ///
    /// The pin is always released when no data is transmitted. Thus, it acts as a standard
    /// I/O in idle or in reception.
    /// Apart from this, the communication protocol is similar to normal USART mode. Any conflict
    /// on the line must be managed by software (for instance by using a centralized arbiter).
    #[cfg(not(any(usart_v1, usart_v2)))]
    #[doc(alias("HDSEL"))]
    pub fn new_half_duplex_on_rx(
        peri: impl Peripheral<P = T> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        mut config: Config,
    ) -> Result<Self, ConfigError> {
        // UartRx and UartTx have one refcount ea.
        T::enable_and_reset();
        T::enable_and_reset();

        config.swap_rx_tx = true;

        into_ref!(peri, rx, tx_dma, rx_dma);

        T::regs().cr3().write(|w| w.set_hdsel(true));
        rx.set_as_af(rx.af_num(), AFType::OutputPushPull);

        Self::new_inner(peri, tx_dma, rx_dma, config)
    }

    fn new_inner_configure(
        peri: impl Peripheral<P = T> + 'd,
        rx: impl Peripheral<P = impl RxPin<T>> + 'd,
        tx: impl Peripheral<P = impl TxPin<T>> + 'd,
        tx_dma: impl Peripheral<P = TxDma> + 'd,
        rx_dma: impl Peripheral<P = RxDma> + 'd,
        config: Config,
    ) -> Result<Self, ConfigError> {
        into_ref!(peri, rx, tx, tx_dma, rx_dma);

        // Some chips do not have swap_rx_tx bit
        cfg_if::cfg_if! {
            if #[cfg(any(usart_v3, usart_v4))] {
                if config.swap_rx_tx {
                    let (rx, tx) = (tx, rx);
                    rx.set_as_af(rx.af_num(), AFType::Input);
                    tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
                } else {
                    rx.set_as_af(rx.af_num(), AFType::Input);
                    tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
                }
            } else {
                rx.set_as_af(rx.af_num(), AFType::Input);
                tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
            }
        }

        Self::new_inner(peri, tx_dma, rx_dma, config)
    }

    fn new_inner(
        peri: PeripheralRef<'d, T>,
        tx_dma: PeripheralRef<'d, TxDma>,
        rx_dma: PeripheralRef<'d, RxDma>,
        config: Config,
    ) -> Result<Self, ConfigError> {
        let r = T::regs();

        configure(r, &config, T::frequency(), T::KIND, true, true)?;

        T::Interrupt::unpend();
        unsafe { T::Interrupt::enable() };

        // create state once!
        let _s = T::state();

        Ok(Self {
            tx: UartTx {
                tx_dma,
                phantom: PhantomData,
            },
            rx: UartRx {
                _peri: peri,
                rx_dma,
                detect_previous_overrun: config.detect_previous_overrun,
                #[cfg(any(usart_v1, usart_v2))]
                buffered_sr: stm32_metapac::usart::regs::Sr(0),
            },
        })
    }

    /// Initiate an asynchronous write
    pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error>
    where
        TxDma: crate::usart::TxDma<T>,
    {
        self.tx.write(buffer).await
    }

    /// Perform a blocking write
    pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
        self.tx.blocking_write(buffer)
    }

    /// Block until transmission complete
    pub fn blocking_flush(&mut self) -> Result<(), Error> {
        self.tx.blocking_flush()
    }

    /// Initiate an asynchronous read into `buffer`
    pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error>
    where
        RxDma: crate::usart::RxDma<T>,
    {
        self.rx.read(buffer).await
    }

    /// Read a single `u8` or return `WouldBlock`
    pub fn nb_read(&mut self) -> Result<u8, nb::Error<Error>> {
        self.rx.nb_read()
    }

    /// Perform a blocking read into `buffer`
    pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
        self.rx.blocking_read(buffer)
    }

    /// Initiate an an asynchronous read with idle line detection enabled
    pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error>
    where
        RxDma: crate::usart::RxDma<T>,
    {
        self.rx.read_until_idle(buffer).await
    }

    /// Split the Uart into a transmitter and receiver, which is
    /// particularly useful when having two tasks correlating to
    /// transmitting and receiving.
    pub fn split(self) -> (UartTx<'d, T, TxDma>, UartRx<'d, T, RxDma>) {
        (self.tx, self.rx)
    }
}

fn reconfigure<T: BasicInstance>(config: &Config) -> Result<(), ConfigError> {
    T::Interrupt::disable();
    let r = T::regs();

    let cr = r.cr1().read();
    configure(r, config, T::frequency(), T::KIND, cr.re(), cr.te())?;

    T::Interrupt::unpend();
    unsafe { T::Interrupt::enable() };

    Ok(())
}

fn configure(
    r: Regs,
    config: &Config,
    pclk_freq: Hertz,
    kind: Kind,
    enable_rx: bool,
    enable_tx: bool,
) -> Result<(), ConfigError> {
    if !enable_rx && !enable_tx {
        return Err(ConfigError::RxOrTxNotEnabled);
    }

    #[cfg(not(usart_v4))]
    static DIVS: [(u16, ()); 1] = [(1, ())];

    #[cfg(usart_v4)]
    static DIVS: [(u16, vals::Presc); 12] = [
        (1, vals::Presc::DIV1),
        (2, vals::Presc::DIV2),
        (4, vals::Presc::DIV4),
        (6, vals::Presc::DIV6),
        (8, vals::Presc::DIV8),
        (10, vals::Presc::DIV10),
        (12, vals::Presc::DIV12),
        (16, vals::Presc::DIV16),
        (32, vals::Presc::DIV32),
        (64, vals::Presc::DIV64),
        (128, vals::Presc::DIV128),
        (256, vals::Presc::DIV256),
    ];

    let (mul, brr_min, brr_max) = match kind {
        #[cfg(any(usart_v3, usart_v4))]
        Kind::Lpuart => (256, 0x300, 0x10_0000),
        Kind::Uart => (1, 0x10, 0x1_0000),
    };

    fn calculate_brr(baud: u32, pclk: u32, presc: u32, mul: u32) -> u32 {
        // The calculation to be done to get the BRR is `mul * pclk / presc / baud`
        // To do this in 32-bit only we can't multiply `mul` and `pclk`
        let clock = pclk / presc;

        // The mul is applied as the last operation to prevent overflow
        let brr = clock / baud * mul;

        // The BRR calculation will be a bit off because of integer rounding.
        // Because we multiplied our inaccuracy with mul, our rounding now needs to be in proportion to mul.
        let rounding = ((clock % baud) * mul + (baud / 2)) / baud;

        brr + rounding
    }

    // UART must be disabled during configuration.
    r.cr1().modify(|w| {
        w.set_ue(false);
    });

    #[cfg(not(usart_v1))]
    let mut over8 = false;
    let mut found_brr = None;
    for &(presc, _presc_val) in &DIVS {
        let brr = calculate_brr(config.baudrate, pclk_freq.0, presc as u32, mul);
        trace!(
            "USART: presc={}, div=0x{:08x} (mantissa = {}, fraction = {})",
            presc,
            brr,
            brr >> 4,
            brr & 0x0F
        );

        if brr < brr_min {
            #[cfg(not(usart_v1))]
            if brr * 2 >= brr_min && kind == Kind::Uart && !cfg!(usart_v1) {
                over8 = true;
                r.brr().write_value(regs::Brr(((brr << 1) & !0xF) | (brr & 0x07)));
                #[cfg(usart_v4)]
                r.presc().write(|w| w.set_prescaler(_presc_val));
                found_brr = Some(brr);
                break;
            }
            return Err(ConfigError::BaudrateTooHigh);
        }

        if brr < brr_max {
            r.brr().write_value(regs::Brr(brr));
            #[cfg(usart_v4)]
            r.presc().write(|w| w.set_prescaler(_presc_val));
            found_brr = Some(brr);
            break;
        }
    }

    let brr = found_brr.ok_or(ConfigError::BaudrateTooLow)?;

    #[cfg(not(usart_v1))]
    let oversampling = if over8 { "8 bit" } else { "16 bit" };
    #[cfg(usart_v1)]
    let oversampling = "default";
    trace!(
        "Using {} oversampling, desired baudrate: {}, actual baudrate: {}",
        oversampling,
        config.baudrate,
        pclk_freq.0 / brr * mul
    );

    r.cr2().write(|w| {
        w.set_stop(match config.stop_bits {
            StopBits::STOP0P5 => vals::Stop::STOP0P5,
            StopBits::STOP1 => vals::Stop::STOP1,
            StopBits::STOP1P5 => vals::Stop::STOP1P5,
            StopBits::STOP2 => vals::Stop::STOP2,
        });

        #[cfg(any(usart_v3, usart_v4))]
        {
            w.set_txinv(config.invert_tx);
            w.set_rxinv(config.invert_rx);
            w.set_swap(config.swap_rx_tx);
        }
    });

    #[cfg(not(usart_v1))]
    r.cr3().modify(|w| {
        w.set_onebit(config.assume_noise_free);
    });

    r.cr1().write(|w| {
        // enable uart
        w.set_ue(true);
        // enable transceiver
        w.set_te(enable_tx);
        // enable receiver
        w.set_re(enable_rx);
        // configure word size
        // if using odd or even parity it must be configured to 9bits
        w.set_m0(if config.parity != Parity::ParityNone {
            vals::M0::BIT9
        } else {
            vals::M0::BIT8
        });
        // configure parity
        w.set_pce(config.parity != Parity::ParityNone);
        w.set_ps(match config.parity {
            Parity::ParityOdd => vals::Ps::ODD,
            Parity::ParityEven => vals::Ps::EVEN,
            _ => vals::Ps::EVEN,
        });
        #[cfg(not(usart_v1))]
        w.set_over8(vals::Over8::from_bits(over8 as _));
        #[cfg(usart_v4)]
        w.set_fifoen(true);
    });

    Ok(())
}

impl<'d, T: BasicInstance, RxDma> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, RxDma> {
    type Error = Error;
    fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
        self.nb_read()
    }
}

impl<'d, T: BasicInstance, TxDma> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, TxDma> {
    type Error = Error;
    fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
        self.blocking_write(buffer)
    }
    fn bflush(&mut self) -> Result<(), Self::Error> {
        self.blocking_flush()
    }
}

impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_02::serial::Read<u8> for Uart<'d, T, TxDma, RxDma> {
    type Error = Error;
    fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
        self.nb_read()
    }
}

impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, TxDma, RxDma> {
    type Error = Error;
    fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
        self.blocking_write(buffer)
    }
    fn bflush(&mut self) -> Result<(), Self::Error> {
        self.blocking_flush()
    }
}

impl embedded_hal_nb::serial::Error for Error {
    fn kind(&self) -> embedded_hal_nb::serial::ErrorKind {
        match *self {
            Self::Framing => embedded_hal_nb::serial::ErrorKind::FrameFormat,
            Self::Noise => embedded_hal_nb::serial::ErrorKind::Noise,
            Self::Overrun => embedded_hal_nb::serial::ErrorKind::Overrun,
            Self::Parity => embedded_hal_nb::serial::ErrorKind::Parity,
            Self::BufferTooLong => embedded_hal_nb::serial::ErrorKind::Other,
        }
    }
}

impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_nb::serial::ErrorType for Uart<'d, T, TxDma, RxDma> {
    type Error = Error;
}

impl<'d, T: BasicInstance, TxDma> embedded_hal_nb::serial::ErrorType for UartTx<'d, T, TxDma> {
    type Error = Error;
}

impl<'d, T: BasicInstance, RxDma> embedded_hal_nb::serial::ErrorType for UartRx<'d, T, RxDma> {
    type Error = Error;
}

impl<'d, T: BasicInstance, RxDma> embedded_hal_nb::serial::Read for UartRx<'d, T, RxDma> {
    fn read(&mut self) -> nb::Result<u8, Self::Error> {
        self.nb_read()
    }
}

impl<'d, T: BasicInstance, TxDma> embedded_hal_nb::serial::Write for UartTx<'d, T, TxDma> {
    fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
        self.blocking_write(&[char]).map_err(nb::Error::Other)
    }

    fn flush(&mut self) -> nb::Result<(), Self::Error> {
        self.blocking_flush().map_err(nb::Error::Other)
    }
}

impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_nb::serial::Read for Uart<'d, T, TxDma, RxDma> {
    fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
        self.nb_read()
    }
}

impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_nb::serial::Write for Uart<'d, T, TxDma, RxDma> {
    fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
        self.blocking_write(&[char]).map_err(nb::Error::Other)
    }

    fn flush(&mut self) -> nb::Result<(), Self::Error> {
        self.blocking_flush().map_err(nb::Error::Other)
    }
}

impl embedded_io::Error for Error {
    fn kind(&self) -> embedded_io::ErrorKind {
        embedded_io::ErrorKind::Other
    }
}

impl<T, TxDma, RxDma> embedded_io::ErrorType for Uart<'_, T, TxDma, RxDma>
where
    T: BasicInstance,
{
    type Error = Error;
}

impl<T, TxDma> embedded_io::ErrorType for UartTx<'_, T, TxDma>
where
    T: BasicInstance,
{
    type Error = Error;
}

impl<T, TxDma, RxDma> embedded_io::Write for Uart<'_, T, TxDma, RxDma>
where
    T: BasicInstance,
    TxDma: crate::usart::TxDma<T>,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        self.blocking_write(buf)?;
        Ok(buf.len())
    }

    fn flush(&mut self) -> Result<(), Self::Error> {
        self.blocking_flush()
    }
}

impl<T, TxDma> embedded_io::Write for UartTx<'_, T, TxDma>
where
    T: BasicInstance,
    TxDma: crate::usart::TxDma<T>,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        self.blocking_write(buf)?;
        Ok(buf.len())
    }

    fn flush(&mut self) -> Result<(), Self::Error> {
        self.blocking_flush()
    }
}

impl<T, TxDma, RxDma> embedded_io_async::Write for Uart<'_, T, TxDma, RxDma>
where
    T: BasicInstance,
    TxDma: self::TxDma<T>,
{
    async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        self.write(buf).await?;
        Ok(buf.len())
    }

    async fn flush(&mut self) -> Result<(), Self::Error> {
        self.blocking_flush()
    }
}

impl<T, TxDma> embedded_io_async::Write for UartTx<'_, T, TxDma>
where
    T: BasicInstance,
    TxDma: self::TxDma<T>,
{
    async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        self.write(buf).await?;
        Ok(buf.len())
    }

    async fn flush(&mut self) -> Result<(), Self::Error> {
        self.blocking_flush()
    }
}

pub use buffered::*;

pub use crate::usart::buffered::InterruptHandler as BufferedInterruptHandler;
mod buffered;

#[cfg(not(gpdma))]
mod ringbuffered;
#[cfg(not(gpdma))]
pub use ringbuffered::RingBufferedUartRx;

use self::sealed::Kind;

#[cfg(any(usart_v1, usart_v2))]
fn tdr(r: crate::pac::usart::Usart) -> *mut u8 {
    r.dr().as_ptr() as _
}

#[cfg(any(usart_v1, usart_v2))]
fn rdr(r: crate::pac::usart::Usart) -> *mut u8 {
    r.dr().as_ptr() as _
}

#[cfg(any(usart_v1, usart_v2))]
fn sr(r: crate::pac::usart::Usart) -> crate::pac::common::Reg<regs::Sr, crate::pac::common::RW> {
    r.sr()
}

#[cfg(any(usart_v1, usart_v2))]
#[allow(unused)]
fn clear_interrupt_flags(_r: Regs, _sr: regs::Sr) {
    // On v1 the flags are cleared implicitly by reads and writes to DR.
}

#[cfg(any(usart_v3, usart_v4))]
fn tdr(r: Regs) -> *mut u8 {
    r.tdr().as_ptr() as _
}

#[cfg(any(usart_v3, usart_v4))]
fn rdr(r: Regs) -> *mut u8 {
    r.rdr().as_ptr() as _
}

#[cfg(any(usart_v3, usart_v4))]
fn sr(r: Regs) -> crate::pac::common::Reg<regs::Isr, crate::pac::common::R> {
    r.isr()
}

#[cfg(any(usart_v3, usart_v4))]
#[allow(unused)]
fn clear_interrupt_flags(r: Regs, sr: regs::Isr) {
    r.icr().write(|w| *w = regs::Icr(sr.0));
}

pub(crate) mod sealed {
    use embassy_sync::waitqueue::AtomicWaker;

    use super::*;

    #[derive(Clone, Copy, PartialEq, Eq)]
    pub enum Kind {
        Uart,
        #[cfg(any(usart_v3, usart_v4))]
        Lpuart,
    }

    pub struct State {
        pub rx_waker: AtomicWaker,
        pub tx_waker: AtomicWaker,
    }

    impl State {
        pub const fn new() -> Self {
            Self {
                rx_waker: AtomicWaker::new(),
                tx_waker: AtomicWaker::new(),
            }
        }
    }

    pub trait BasicInstance: crate::rcc::RccPeripheral {
        const KIND: Kind;
        type Interrupt: interrupt::typelevel::Interrupt;

        fn regs() -> Regs;
        fn state() -> &'static State;

        fn buffered_state() -> &'static buffered::State;
    }

    pub trait FullInstance: BasicInstance {
        fn regs_uart() -> crate::pac::usart::Usart;
    }
}

/// Basic UART driver instance
pub trait BasicInstance: Peripheral<P = Self> + sealed::BasicInstance + 'static + Send {}

/// Full UART driver instance
pub trait FullInstance: sealed::FullInstance {}

pin_trait!(RxPin, BasicInstance);
pin_trait!(TxPin, BasicInstance);
pin_trait!(CtsPin, BasicInstance);
pin_trait!(RtsPin, BasicInstance);
pin_trait!(CkPin, BasicInstance);
pin_trait!(DePin, BasicInstance);

dma_trait!(TxDma, BasicInstance);
dma_trait!(RxDma, BasicInstance);

macro_rules! impl_usart {
    ($inst:ident, $irq:ident, $kind:expr) => {
        impl sealed::BasicInstance for crate::peripherals::$inst {
            const KIND: Kind = $kind;
            type Interrupt = crate::interrupt::typelevel::$irq;

            fn regs() -> Regs {
                unsafe { Regs::from_ptr(crate::pac::$inst.as_ptr()) }
            }

            fn state() -> &'static crate::usart::sealed::State {
                static STATE: crate::usart::sealed::State = crate::usart::sealed::State::new();
                &STATE
            }

            fn buffered_state() -> &'static buffered::State {
                static STATE: buffered::State = buffered::State::new();
                &STATE
            }
        }

        impl BasicInstance for peripherals::$inst {}
    };
}

foreach_interrupt!(
    ($inst:ident, usart, LPUART, $signal_name:ident, $irq:ident) => {
        impl_usart!($inst, $irq, Kind::Lpuart);
    };

    ($inst:ident, usart, $block:ident, $signal_name:ident, $irq:ident) => {
        impl_usart!($inst, $irq, Kind::Uart);

        impl sealed::FullInstance for peripherals::$inst {
            fn regs_uart() -> crate::pac::usart::Usart {
                crate::pac::$inst
            }
        }

        impl FullInstance for peripherals::$inst {}
    };
);