1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
//! Async mutex.
//!
//! This module provides a mutex that can be used to synchronize data between asynchronous tasks.
use core::cell::{RefCell, UnsafeCell};
use core::future::poll_fn;
use core::ops::{Deref, DerefMut};
use core::task::Poll;
use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex as BlockingMutex;
use crate::waitqueue::WakerRegistration;
/// Error returned by [`Mutex::try_lock`]
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct TryLockError;
struct State {
locked: bool,
waker: WakerRegistration,
}
/// Async mutex.
///
/// The mutex is generic over a blocking [`RawMutex`](crate::blocking_mutex::raw::RawMutex).
/// The raw mutex is used to guard access to the internal "is locked" flag. It
/// is held for very short periods only, while locking and unlocking. It is *not* held
/// for the entire time the async Mutex is locked.
///
/// Which implementation you select depends on the context in which you're using the mutex.
///
/// Use [`CriticalSectionRawMutex`](crate::blocking_mutex::raw::CriticalSectionRawMutex) when data can be shared between threads and interrupts.
///
/// Use [`NoopRawMutex`](crate::blocking_mutex::raw::NoopRawMutex) when data is only shared between tasks running on the same executor.
///
/// Use [`ThreadModeRawMutex`](crate::blocking_mutex::raw::ThreadModeRawMutex) when data is shared between tasks running on the same executor but you want a singleton.
///
pub struct Mutex<M, T>
where
M: RawMutex,
T: ?Sized,
{
state: BlockingMutex<M, RefCell<State>>,
inner: UnsafeCell<T>,
}
unsafe impl<M: RawMutex + Send, T: ?Sized + Send> Send for Mutex<M, T> {}
unsafe impl<M: RawMutex + Sync, T: ?Sized + Send> Sync for Mutex<M, T> {}
/// Async mutex.
impl<M, T> Mutex<M, T>
where
M: RawMutex,
{
/// Create a new mutex with the given value.
pub const fn new(value: T) -> Self {
Self {
inner: UnsafeCell::new(value),
state: BlockingMutex::new(RefCell::new(State {
locked: false,
waker: WakerRegistration::new(),
})),
}
}
}
impl<M, T> Mutex<M, T>
where
M: RawMutex,
T: ?Sized,
{
/// Lock the mutex.
///
/// This will wait for the mutex to be unlocked if it's already locked.
pub async fn lock(&self) -> MutexGuard<'_, M, T> {
poll_fn(|cx| {
let ready = self.state.lock(|s| {
let mut s = s.borrow_mut();
if s.locked {
s.waker.register(cx.waker());
false
} else {
s.locked = true;
true
}
});
if ready {
Poll::Ready(MutexGuard { mutex: self })
} else {
Poll::Pending
}
})
.await
}
/// Attempt to immediately lock the mutex.
///
/// If the mutex is already locked, this will return an error instead of waiting.
pub fn try_lock(&self) -> Result<MutexGuard<'_, M, T>, TryLockError> {
self.state.lock(|s| {
let mut s = s.borrow_mut();
if s.locked {
Err(TryLockError)
} else {
s.locked = true;
Ok(())
}
})?;
Ok(MutexGuard { mutex: self })
}
/// Consumes this mutex, returning the underlying data.
pub fn into_inner(self) -> T
where
T: Sized,
{
self.inner.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the Mutex mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
pub fn get_mut(&mut self) -> &mut T {
self.inner.get_mut()
}
}
/// Async mutex guard.
///
/// Owning an instance of this type indicates having
/// successfully locked the mutex, and grants access to the contents.
///
/// Dropping it unlocks the mutex.
pub struct MutexGuard<'a, M, T>
where
M: RawMutex,
T: ?Sized,
{
mutex: &'a Mutex<M, T>,
}
impl<'a, M, T> Drop for MutexGuard<'a, M, T>
where
M: RawMutex,
T: ?Sized,
{
fn drop(&mut self) {
self.mutex.state.lock(|s| {
let mut s = unwrap!(s.try_borrow_mut());
s.locked = false;
s.waker.wake();
})
}
}
impl<'a, M, T> Deref for MutexGuard<'a, M, T>
where
M: RawMutex,
T: ?Sized,
{
type Target = T;
fn deref(&self) -> &Self::Target {
// Safety: the MutexGuard represents exclusive access to the contents
// of the mutex, so it's OK to get it.
unsafe { &*(self.mutex.inner.get() as *const T) }
}
}
impl<'a, M, T> DerefMut for MutexGuard<'a, M, T>
where
M: RawMutex,
T: ?Sized,
{
fn deref_mut(&mut self) -> &mut Self::Target {
// Safety: the MutexGuard represents exclusive access to the contents
// of the mutex, so it's OK to get it.
unsafe { &mut *(self.mutex.inner.get()) }
}
}