1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
//! FUSB302B registers
//!
//! Setters/getters/clearers generated using macros, `Default` for each register
//! is its reset value.
use {
crate::DEVICE_ADDRESS,
defmt::Format,
embedded_hal_async::i2c::I2c,
proc_bitfield::bitfield,
usb_pd::{DataRole, PowerRole},
};
pub struct Registers<I2C> {
i2c: I2C,
}
macro_rules! generate_register_read {
($reg:ident, $fn:ident) => {
pub async fn $fn(&mut self) -> $reg {
self.read_register_raw(Register::$reg as u8).await.into()
}
};
}
macro_rules! generate_register_write {
($reg:ident, $fn:ident) => {
paste::item! {
pub async fn [<set_ $fn>](&mut self, value: $reg) {
self.write_register_raw(Register::$reg as u8, value.0).await;
}
}
};
}
macro_rules! generate_register_clear {
($reg:ident, $fn:ident) => {
paste::item! {
pub async fn [<clear_ $fn>](&mut self) {
self.write_register_raw(Register::$reg as u8, $reg::default().0).await;
}
}
};
}
macro_rules! generate_register_accessors {
() => {};
(($reg:ident, $fn:ident, r), $($tail:tt)*) => {
generate_register_read!($reg, $fn);
generate_register_accessors!($($tail)*);
};
(($reg:ident, $fn:ident, rw), $($tail:tt)*) => {
generate_register_read!($reg, $fn);
generate_register_write!($reg, $fn);
generate_register_accessors!($($tail)*);
};
(($reg:ident, $fn:ident, wc), $($tail:tt)*) => {
generate_register_write!($reg, $fn);
generate_register_clear!($reg, $fn);
generate_register_accessors!($($tail)*);
};
(($reg:ident, $fn:ident, rc), $($tail:tt)*) => {
generate_register_read!($reg, $fn);
generate_register_clear!($reg, $fn);
generate_register_accessors!($($tail)*);
};
(($reg:ident, $fn:ident, rwc), $($tail:tt)*) => {
generate_register_read!($reg, $fn);
generate_register_write!($reg, $fn);
generate_register_clear!($reg, $fn);
generate_register_accessors!($($tail)*);
};
}
impl<I2C: I2c> Registers<I2C> {
pub fn new(i2c: I2C) -> Self {
Self { i2c }
}
async fn write_register_raw(&mut self, register: u8, value: u8) {
self.i2c
.write(DEVICE_ADDRESS, &[register, value])
.await
.unwrap();
}
async fn read_register_raw(&mut self, register: u8) -> u8 {
let mut buffer = [0u8];
(self
.i2c
.write_read(DEVICE_ADDRESS, &[register], &mut buffer)
.await
.unwrap());
buffer[0]
}
pub async fn read_fifo(&mut self, buf: &mut [u8]) {
(self
.i2c
.write_read(DEVICE_ADDRESS, &[Register::Fifo as u8], buf)
.await
.unwrap());
}
pub async fn write_raw(&mut self, buf: &mut [u8]) {
(self.i2c.write(DEVICE_ADDRESS, buf).await.unwrap());
}
generate_register_accessors!(
(DeviceId, device_id, r),
(Switches0, switches0, rw),
(Switches1, switches1, rw),
(Measure, measure, rw),
(Slice, slice, rw),
(Control0, control0, rwc),
(Control1, control1, rwc),
(Control2, control2, rw),
(Control3, control3, rw),
(Mask1, mask1, rw),
(Power, power, rw),
(Reset, reset, wc),
(OcPreg, ocpreg, rw),
(MaskA, mask_a, rw),
(MaskB, mask_b, rw),
(Control4, control4, rw),
(Status0A, status0a, r),
(Status1A, status1a, r),
(InterruptA, interrupta, rc),
(InterruptB, interruptb, rc),
(Status0, status0, r),
(Status1, status1, r),
(Interrupt, interrupt, rc),
);
}
pub enum Register {
DeviceId = 0x01,
Switches0 = 0x02,
Switches1 = 0x03,
Measure = 0x04,
Slice = 0x05,
Control0 = 0x06,
Control1 = 0x07,
Control2 = 0x08,
Control3 = 0x09,
Mask1 = 0x0A,
Power = 0x0B,
Reset = 0x0C,
OcPreg = 0x0D,
MaskA = 0x0E,
MaskB = 0x0F,
Control4 = 0x10,
Status0A = 0x3C,
Status1A = 0x3D,
InterruptA = 0x3E,
InterruptB = 0x3F,
Status0 = 0x40,
Status1 = 0x41,
Interrupt = 0x42,
Fifo = 0x43,
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct DeviceId(pub u8): FromRaw, IntoRaw {
/// Device version ID by Trim or etc
pub version_id: u8 [read_only] @ 4..=7,
pub product_id: u8 [read_only] @ 2..=3,
/// Revision History of each version
pub revison_id: u8 [read_only] @ 0..=1,
}
}
impl Default for DeviceId {
fn default() -> Self {
Self(0b1001_0000)
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Switches0(pub u8): FromRaw, IntoRaw {
/// Apply host pull up current to CC2 pin
pub pu_en2: bool @ 7,
/// Apply host pull up current to CC1 pin
pub pu_en1: bool @ 6,
/// Turn on the VCONN current to CC2 pin
pub vconn_cc2: bool @ 5,
/// Turn on the VCONN current to CC1 pin
pub vconn_cc1: bool @ 4,
/// Use the measure block to monitor or measure the voltage on CC2
pub meas_cc2: bool @ 3,
/// Use the measure block to monitor or measure the voltage on CC1
pub meas_cc1: bool @ 2,
/// Device pull down on CC2
pub pdwn2: bool @ 1,
/// Device pull down on CC1
pub pdwn1: bool @ 0,
}
}
impl Default for Switches0 {
fn default() -> Self {
Self(0b0000_0011)
}
}
/// Bit used for constructing the GoodCRC acknowledge packet
#[derive(Clone, Copy)]
pub enum Revision {
R1_0,
R2_0,
}
impl From<bool> for Revision {
fn from(value: bool) -> Self {
match value {
false => Self::R1_0,
true => Self::R2_0,
}
}
}
impl From<Revision> for bool {
fn from(revision: Revision) -> bool {
match revision {
Revision::R1_0 => false,
Revision::R2_0 => true,
}
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Switches1(pub u8): FromRaw, IntoRaw {
/// Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the
/// Port Power Role bit in the message header if an SOP packet is received.
pub powerrole: bool [set PowerRole, get PowerRole] @ 7,
/// Bit used for constructing the GoodCRC acknowledge packet. These bits correspond to the
/// Specification Revision bits in the message header.
pub specrev: bool [set Revision, get Revision] @ 5,
/// Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the
/// Port Data Role bit in the message header.
pub datarole: bool [set DataRole, get DataRole] @ 4,
/// Starts the transmitter automatically when a message with a good CRC is received and
/// automatically sends a GoodCRC acknowledge packet back to the relevant SOP*
pub auto_src: bool @ 2,
/// Enable BMC transmit driver on CC2 pin
pub txcc2: bool @ 1,
/// Enable BMC transmit driver on CC1 pin
pub txcc1: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Measure(pub u8): FromRaw, IntoRaw {
/// false: MDAC/comparator measurement is controlled by MEAS_CC* bits
/// true: Measure VBUS with the MDAC/comparator. This requires MEAS_CC* bits to be 0
pub meas_vbus: bool @ 6,
/// Measure Block DAC data input. LSB is equivalent to 42 mV of voltage which is compared
/// to the measured CC voltage. The measured CC is selected by MEAS_CC2, or MEAS_CC1 bits:
///
/// | `MDAC[5:0]` | `MEAS_VBUS = 0` | `MEAS_VBUS = 1` | Unit |
/// |-------------|-----------------|-----------------|------|
/// | `00_0000` | 0.042 | 0.420 | V |
/// | `00_0001` | 0.084 | 0.840 | V |
/// | `11_0000` | 2.058 | 20.58 | V |
/// | `11_0011` | 2.184 | 21.84 | V |
/// | `11_1110` | 2.646 | 26.46 | V |
/// | `11_1111` | >2.688 | 26.88 | V |
/// | `11_1111` | >2.688 | 26.88 | V |
pub mdac: u8 @ 0..=5,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Slice(pub u8): FromRaw, IntoRaw {
/// Adds hysteresis where there are now two thresholds, the lower threshold which is always
/// the value programmed by SDAC\[5:0\] and the higher threshold that is:
/// * `11`: 255 mV hysteresis: higher threshold = (SDAC value + 20hex)
/// * `10`: 170 mV hysteresis: higher threshold = (SDAC value + Ahex)
/// * `01`: 85 mV hysteresis: higher threshold = (SDAC value + 5)
/// * `00`: No hysteresis: higher threshold = SDAC value
pub sda_hys: u8 @ 6..=7,
/// BMC Slicer DAC data input. Allows for a programmable threshold so as to meet the BMC
/// receive mask under all noise conditions.
pub sdac: u8 @ 0..=5,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Control0(pub u8): FromRaw, IntoRaw {
/// Self clearing bit to flush the content of the transmit FIFO
pub tx_flush: bool [write_only] @ 6,
/// Masks all interrupts, when false interrupts to host are enabled
pub int_mask: bool @ 5,
/// Controls the host pull up current enabled by PU_EN
///
/// * `00`: No current
/// * `01`: 80 mA – Default USB power
/// * `10`: 180 mA – Medium Current Mode: 1.5 A
/// * `11`: 330 mA – High Current Mode: 3 A
pub host_cur: u8 @ 2..=3,
/// Starts the transmitter automatically when a message with a good CRC is received. This
/// allows the software to take as much as 300 mS to respond after the I_CRC_CHK interrupt
/// is received. Before starting the transmitter, an internal timer waits for approximately
/// 170 mS before executing the transmit start and preamble
pub auto_pre: bool @ 1,
/// Start transmitter using the data in the transmit FIFO. Preamble is started first.
/// During the preamble period the transmit data can start to be written to the transmit
/// FIFO. Self clearing.
pub tx_start: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Control1(pub u8): FromRaw, IntoRaw {
/// Enable SOP''_DEBUG (SOP double prime debug) packets, false for ignore
pub ensop2db: bool @ 6,
/// Enable SOP'_DEBUG (SOP prime debug) packets, false for ignore
pub ensop1db: bool @ 5,
/// Sent BIST Mode 01s pattern for testing
pub bist_mode2: bool @ 4,
/// Self clearing bit to flush the content of the receive FIFO
pub rx_flush: bool [write_only] @ 2,
/// Enable SOP'' (SOP double prime) packets, false for ignore
pub ensop2: bool @ 1,
/// Enable SOP' (SOP prime) packets, false for ignore
pub ensop1: bool @ 1,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Control2(pub u8): FromRaw, IntoRaw {
/// * `00`: Don’t go into the DISABLE state after one cycle of toggle
/// * `01`: Wait between toggle cycles for tDIS time of 40 ms
/// * `10`: Wait between toggle cycles for tDIS time of 80 ms
/// * `11`: Wait between toggle cycles for tDIS time of 160 ms
pub tog_save_pwr: u8 @ 6..=7,
/// * `true`: When TOGGLE=1 only Rd values will cause the TOGGLE state machine to stop toggling and trigger the I_TOGGLE interrupt
/// * `false`: When TOGGLE=1, Rd and Ra values will cause the TOGGLE state machine to stop toggling
pub rog_rd_only: bool @ 5,
/// Enable Wake Detection functionality if the power state is correct
pub wake_end: bool @ 3,
/// * `11`: Enable SRC polling functionality if TOGGLE=1
/// * `10`: Enable SNK polling functionality if TOGGLE=1
/// * `01`: Enable DRP polling functionality if TOGGLE=1
/// * `00`: Do Not Use
pub mode: u8 @ 1..=2,
/// Enable DRP, SNK or SRC Toggle autonomous functionality
pub toggle: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Control3(pub u8): FromRaw, IntoRaw {
/// Send a hard reset packet (highest priority)
pub send_hard_reset: bool [write_only] @ 6,
/// BIST mode when enabled. Receive FIFO is cleared immediately after sending GoodCRC response.
///
/// Normal operation when disabled; all packets are treated as usual.
pub bist_tmode: bool @ 5,
/// Enable automatic hard reset packet if soft reset fail
pub auto_hardreset: bool @ 4,
/// Enable automatic soft reset packet if retries fail
pub auto_softreset: bool @ 3,
/// * `11`: Three retries of packet (four total packets sent)
/// * `10`: Two retries of packet (three total packets sent)
/// * `01`: One retry of packet (two total packets sent)
/// * `00`: No retries (similar to disabling auto retry)
pub n_retries: u8 @ 1..=2,
/// Enable automatic packet retries if GoodCRC is not received
pub auto_retry: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Mask1(pub u8): FromRaw, IntoRaw {
/// Mask I_VBUSOK interrupt bit
pub m_vbusok: bool @ 7,
/// Mask interrupt for a transition in CC bus activity
pub m_activity: bool @ 6,
/// Mask I_COMP_CHNG interrupt for change is the value of COMP, the measure comparator
pub m_comp_chng: bool @ 5,
/// Mask interrupt from CRC_CHK bit
pub m_crc_chk: bool @ 4,
/// Mask the I_ALERT interrupt bit
pub m_alert: bool @ 3,
/// Mask the I_WAKE interrupt bit
pub m_wake: bool @ 2,
/// Mask the I_COLLISION interrupt bit
pub m_collision: bool @ 1,
/// Mask a change in host requested current level
pub m_bc_lvl: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Format, Default)]
pub struct Power(pub u8): FromRaw, IntoRaw {
/// Enable internal oscillator
pub internal_oscillator: bool @ 3,
/// Measure block powered
pub measure_block: bool @ 2,
/// Receiver powered and current references for Measure block
pub receiver: bool @ 1,
/// Band gap and wake circuit
pub bandgap_wake: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Reset(pub u8): FromRaw, IntoRaw {
/// Reset just the PD logic for both the PD transmitter and receiver
pub pd_reset: bool @ 1,
/// Reset the FUSB302B including the I2C registers to their default values
pub sw_reset: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct OcPreg(pub u8): FromRaw, IntoRaw {
/// * `true`: OCP range between 100−800 mA (max_range = 800 mA)
/// * `false`: OCP range between 10−80 mA (max_range = 80 mA)
pub ocp_range: bool @ 3,
/// * `111`: max_range (see bit definition above for OCP_RANGE)
/// * `110`: 7 * max_range / 8
/// * `101`: 6 * max_range / 8
/// * `100`: 5 * max_range / 8
/// * `011`: 4 * max_range / 8
/// * `010`: 3 * max_range / 8
/// * `001`: 2 * max_range / 8
/// * `000`: max_range / 8
pub ocp_cur: u8 @ 0..=2,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct MaskA(pub u8): FromRaw, IntoRaw {
/// Mask the I_OCP_TEMP interrupt
pub m_ocp_temp: bool @ 7,
/// Mask the I_TOGDONE interrupt
pub m_togdone: bool @ 6,
/// Mask the I_SOFTFAIL interrupt
pub m_softfail: bool @ 5,
/// Mask the I_RETRYFAIL interrupt
pub m_retryfail: bool @ 4,
/// Mask the I_HARDSENT interrupt
pub m_hardsent: bool @ 3,
/// Mask the I_TXSENT interrupt
pub m_txsent: bool @ 2,
/// Mask the I_SOFTRST interrupt
pub m_softrst: bool @ 1,
/// Mask the I_HARDRST interrupt
pub m_hardrst: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct MaskB(pub u8): FromRaw, IntoRaw {
/// Mask the I_GCRCSENT interrupt
pub m_gcrcsent: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Control4(pub u8): FromRaw, IntoRaw {
/// In auto Rd only Toggle mode, stop Toggle at Audio accessory (Ra on both CC)
pub tog_exit_aud: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Status0A(pub u8): FromRaw, IntoRaw {
/// All soft reset packets with retries have failed to get a GoodCRC acknowledge. This
/// status is cleared when a START_TX, TXON or SEND_HARD_RESET is executed
pub softfail: bool [read_only] @ 5,
/// All packet retries have failed to get a GoodCRC acknowledge. This status is cleared
/// when a START_TX, TXON or SEND_HARD_RESET is executed
pub retryfail: bool [read_only] @ 4,
/// Internal power state when logic internals needs to control the power state. POWER3
/// corresponds to PWR3 bit and POWER2 corresponds to PWR2 bit. The power state is the
/// higher of both PWR\[3:0\] and {POWER3, POWER2, PWR\[1:0\]} so that if one is 03 and the
/// other is F then the internal power state is F.
pub power: u8 [read_only] @ 2..=3,
/// One of the packets received was a soft reset packet
pub softrst: bool [read_only] @ 1,
/// Hard Reset PD ordered set has been received
pub hardrst: bool [read_only] @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Status1A(pub u8): FromRaw, IntoRaw {
/// * `000`: Toggle logic running (processor has previously written TOGGLE=1)
/// * `001`: Toggle functionality has settled to SRCon CC1 (STOP_SRC1 state)
/// * `010`: Toggle functionality has settled to SRCon CC2 (STOP_SRC2 state)
/// * `101`: Toggle functionality has settled to SNKon CC1 (STOP_SNK1 state)
/// * `110`: Toggle functionality has settled to SNKon CC2 (STOP_SNK2 state)
/// * `111`: Toggle functionality has detected AudioAccessory with vRa on both CC1 and CC2
/// (settles to STOP_SRC1 state)
///
/// Otherwise: Not defined (do not interpret)
pub togss: u8 [read_only] @ 3..=5,
/// Indicates the last packet placed in the RxFIFO is type SOP''_DEBUG (SOP double prime
/// debug)
pub rxsop2db: bool [read_only] @ 2,
/// Indicates the last packet placed in the RxFIFO is type SOP'_DEBUG (SOP prime debug)
pub rxsop1db: bool [read_only] @ 1,
/// Indicates the last packet placed in the RxFIFO is type SOP
pub rxsop: bool [read_only] @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct InterruptA(pub u8): FromRaw, IntoRaw {
/// Interrupt from either a OCP event on one of the VCONN switches or an over-temperature
/// event
pub i_ocp_temp: bool @ 7,
/// Interrupt indicating the TOGGLE functionality was terminated because a device was
/// detected
pub i_togdone: bool @ 6,
/// Interrupt from automatic soft reset packets with retries have failed
pub i_softfail: bool @ 5,
/// Interrupt from automatic packet retries have failed
pub i_retryfail: bool @ 4,
/// Interrupt from successfully sending a hard reset ordered set
pub i_hardsent: bool @ 3,
/// Interrupt to alert that we sent a packet that was acknowledged with a GoodCRC response
/// packet
pub i_txsent: bool @ 2,
/// Received a soft reset packet
pub i_softrst: bool @ 1,
/// Received a hard reset ordered set
pub i_hardrst: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct InterruptB(pub u8): FromRaw, IntoRaw {
/// Sent a GoodCRC acknowledge packet in response to an incoming packet that has the
/// correct CRC value
pub i_gcrcsent: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Format, Default)]
pub struct Status0(pub u8): FromRaw, IntoRaw {
/// Interrupt occurs when VBUS transitions through vVBUSthr. This bit typically is used to
/// recognize port partner during startup
pub vbusok: bool [read_only] @ 7,
/// Transitions are detected on the active CC* line. This bit goes high after a minimum of
/// 3 CC transitions, and goes low with no Transitions
pub activity: bool [read_only] @ 6,
/// Measured CC* input is higher than reference level driven from the MDAC
pub comp: bool [read_only] @ 5,
/// Indicates the last received packet had the correct CRC. This bit remains set until the
/// SOP of the next packet
///
/// If false, packet received for an enabled SOP* and CRC for the enabled packet received
/// was incorrect
pub crc_chk: bool [read_only] @ 4,
/// Alert software an error condition has occurred. An alert is caused by:
/// * TX_FULL: the transmit FIFO is full
/// * RX_FULL: the receive FIFO is full
///
/// See Status1 bits
pub alert: bool [read_only] @ 3,
/// * `true`: Voltage on CC indicated a device attempting to attach
/// * `false`: WAKE either not enabled (WAKE_EN=0) or no device attached
pub wake: bool [read_only] @ 2,
/// Current voltage status of the measured CC pin interpreted as host current levels as
/// follows:
///
/// * `00`: < 200 mV
/// * `01`: > 200mV, < 660mV
/// * `10`: > 660mV, < 1.23V
/// * `11`: > 1.23 V
///
/// Note the software must measure these at an appropriate time, while there is no signaling
/// activity on the selected CC line. BC_LVL is only defined when Measure block is on which
/// is when register bits PWR\[2\]=1 and either MEAS_CC1=1 or MEAS_CC2=1
pub bc_lvl: u8 [read_only] @ 0..=1,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Format, Default)]
pub struct Status1(pub u8): FromRaw, IntoRaw {
/// Indicates the last packet placed in the RxFIFO is type SOP'' (SOP double prime)
pub rxsop2: bool [read_only] @ 7,
/// Indicates the last packet placed in the RxFIFO is type SOP' (SOP prime)
pub rxsop1: bool [read_only] @ 6,
/// The receive FIFO is empty
pub rx_empty: bool [read_only] @ 5,
/// The receive FIFO is full
pub rx_full: bool [read_only] @ 4,
/// The transmit FIFO is empty
pub tx_empty: bool [read_only] @ 3,
/// The transmit FIFO is full
pub tx_full: bool [read_only] @ 2,
/// Temperature of the device is too high
pub overtemp: bool [read_only] @ 1,
/// Indicates an over-current or short condition has occurred on the VCONN switch
pub ocp: bool [read_only] @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Interrupt(pub u8): FromRaw, IntoRaw {
/// Interrupt occurs when VBUS transitions through 4.5 V. This bit typically is used to recognize port partner during startup
pub i_vbusok: bool @ 7,
/// A change in the value of ACTIVITY of the CC bus has oc- curred
pub i_activity: bool @ 6,
/// A change in the value of COMP has occurred. Indicates se- lected CC line has tripped a threshold programmed into the MDAC
pub i_comp_chng: bool @ 5,
/// The value of CRC_CHK newly valid. I.e. The validity of the incoming packet has been checked
pub i_crc_chk: bool @ 4,
/// Alert software an error condition has occurred. An alert is caused by:
///
/// * TX_FULL: the transmit FIFO is full
/// * RX_FULL: the receive FIFO is full See Status1 bits
pub i_alert: bool @ 3,
/// Voltage on CC indicated a device attempting to attach. Software must then power up the clock and receiver blocks
pub i_wake: bool @ 2,
/// When a transmit was attempted, activity was detected on the active CC line. Transmit is not done. The packet is received normally
pub i_collision: bool @ 1,
/// A change in host requested current level has occurred
pub i_bc_lvl: bool @ 0,
}
}
bitfield! {
#[derive(Clone, Copy, PartialEq, Eq, Default)]
pub struct Fifo(pub u8): FromRaw, IntoRaw {
/// Writing to this register writes a byte into the transmit FIFO. Reading from this register reads from the receive FIFO.
/// Each byte is a coded token. Or a token followed by a fixed number of packed data byte (see token coding in Table 41)
pub token: u8 @ 0..7,
}
}