1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
use core::{cmp::Ordering, fmt, hash, iter::FromIterator, mem::MaybeUninit, ops, ptr, slice};

/// A fixed capacity [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html)
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
///
/// // A vector with a fixed capacity of 8 elements allocated on the stack
/// let mut vec = Vec::<_, 8>::new();
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec[0], 1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
///
/// vec[0] = 7;
/// assert_eq!(vec[0], 7);
///
/// vec.extend([1, 2, 3].iter().cloned());
///
/// for x in &vec {
///     println!("{}", x);
/// }
/// assert_eq!(*vec, [7, 1, 2, 3]);
/// ```
pub struct Vec<T, const N: usize> {
    // NOTE order is important for optimizations. the `len` first layout lets the compiler optimize
    // `new` to: reserve stack space and zero the first word. With the fields in the reverse order
    // the compiler optimizes `new` to `memclr`-ing the *entire* stack space, including the `buffer`
    // field which should be left uninitialized. Optimizations were last checked with Rust 1.60
    len: usize,

    buffer: [MaybeUninit<T>; N],
}

impl<T, const N: usize> Vec<T, N> {
    const ELEM: MaybeUninit<T> = MaybeUninit::uninit();
    const INIT: [MaybeUninit<T>; N] = [Self::ELEM; N]; // important for optimization of `new`

    /// Constructs a new, empty vector with a fixed capacity of `N`
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// // allocate the vector on the stack
    /// let mut x: Vec<u8, 16> = Vec::new();
    ///
    /// // allocate the vector in a static variable
    /// static mut X: Vec<u8, 16> = Vec::new();
    /// ```
    /// `Vec` `const` constructor; wrap the returned value in [`Vec`].
    pub const fn new() -> Self {
        Self {
            len: 0,
            buffer: Self::INIT,
        }
    }

    /// Constructs a new vector with a fixed capacity of `N` and fills it
    /// with the provided slice.
    ///
    /// This is equivalent to the following code:
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut v: Vec<u8, 16> = Vec::new();
    /// v.extend_from_slice(&[1, 2, 3]).unwrap();
    /// ```
    #[inline]
    pub fn from_slice(other: &[T]) -> Result<Self, ()>
    where
        T: Clone,
    {
        let mut v = Vec::new();
        v.extend_from_slice(other)?;
        Ok(v)
    }

    /// Clones a vec into a new vec
    pub(crate) fn clone(&self) -> Self
    where
        T: Clone,
    {
        let mut new = Self::new();
        // avoid `extend_from_slice` as that introduces a runtime check / panicking branch
        for elem in self {
            unsafe {
                new.push_unchecked(elem.clone());
            }
        }
        new
    }

    /// Returns a raw pointer to the vector’s buffer.
    pub fn as_ptr(&self) -> *const T {
        self.buffer.as_ptr() as *const T
    }

    /// Returns a raw pointer to the vector’s buffer, which may be mutated through.
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.buffer.as_mut_ptr() as *mut T
    }

    /// Extracts a slice containing the entire vector.
    ///
    /// Equivalent to `&s[..]`.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    /// let buffer: Vec<u8, 5> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap();
    /// assert_eq!(buffer.as_slice(), &[1, 2, 3, 5, 8]);
    /// ```
    pub fn as_slice(&self) -> &[T] {
        // NOTE(unsafe) avoid bound checks in the slicing operation
        // &buffer[..self.len]
        unsafe { slice::from_raw_parts(self.buffer.as_ptr() as *const T, self.len) }
    }

    /// Returns the contents of the vector as an array of length `M` if the length
    /// of the vector is exactly `M`, otherwise returns `Err(self)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    /// let buffer: Vec<u8, 42> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap();
    /// let array: [u8; 5] = buffer.into_array().unwrap();
    /// assert_eq!(array, [1, 2, 3, 5, 8]);
    /// ```
    pub fn into_array<const M: usize>(self) -> Result<[T; M], Self> {
        if self.len() == M {
            // This is how the unstable `MaybeUninit::array_assume_init` method does it
            let array = unsafe { (&self.buffer as *const _ as *const [T; M]).read() };

            // We don't want `self`'s destructor to be called because that would drop all the
            // items in the array
            core::mem::forget(self);

            Ok(array)
        } else {
            Err(self)
        }
    }

    /// Extracts a mutable slice containing the entire vector.
    ///
    /// Equivalent to `&mut s[..]`.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    /// let mut buffer: Vec<u8, 5> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap();
    /// buffer[0] = 9;
    /// assert_eq!(buffer.as_slice(), &[9, 2, 3, 5, 8]);
    /// ```
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        // NOTE(unsafe) avoid bound checks in the slicing operation
        // &mut buffer[..self.len]
        unsafe { slice::from_raw_parts_mut(self.buffer.as_mut_ptr() as *mut T, self.len) }
    }

    /// Returns the maximum number of elements the vector can hold.
    pub const fn capacity(&self) -> usize {
        N
    }

    /// Clears the vector, removing all values.
    pub fn clear(&mut self) {
        self.truncate(0);
    }

    /// Extends the vec from an iterator.
    ///
    /// # Panic
    ///
    /// Panics if the vec cannot hold all elements of the iterator.
    pub fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = T>,
    {
        for elem in iter {
            self.push(elem).ok().unwrap()
        }
    }

    /// Clones and appends all elements in a slice to the `Vec`.
    ///
    /// Iterates over the slice `other`, clones each element, and then appends
    /// it to this `Vec`. The `other` vector is traversed in-order.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut vec = Vec::<u8, 8>::new();
    /// vec.push(1).unwrap();
    /// vec.extend_from_slice(&[2, 3, 4]).unwrap();
    /// assert_eq!(*vec, [1, 2, 3, 4]);
    /// ```
    pub fn extend_from_slice(&mut self, other: &[T]) -> Result<(), ()>
    where
        T: Clone,
    {
        if self.len + other.len() > self.capacity() {
            // won't fit in the `Vec`; don't modify anything and return an error
            Err(())
        } else {
            for elem in other {
                unsafe {
                    self.push_unchecked(elem.clone());
                }
            }
            Ok(())
        }
    }

    /// Removes the last element from a vector and returns it, or `None` if it's empty
    pub fn pop(&mut self) -> Option<T> {
        if self.len != 0 {
            Some(unsafe { self.pop_unchecked() })
        } else {
            None
        }
    }

    /// Appends an `item` to the back of the collection
    ///
    /// Returns back the `item` if the vector is full
    pub fn push(&mut self, item: T) -> Result<(), T> {
        if self.len < self.capacity() {
            unsafe { self.push_unchecked(item) }
            Ok(())
        } else {
            Err(item)
        }
    }

    /// Removes the last element from a vector and returns it
    ///
    /// # Safety
    ///
    /// This assumes the vec to have at least one element.
    pub unsafe fn pop_unchecked(&mut self) -> T {
        debug_assert!(!self.is_empty());

        self.len -= 1;
        (self.buffer.get_unchecked_mut(self.len).as_ptr() as *const T).read()
    }

    /// Appends an `item` to the back of the collection
    ///
    /// # Safety
    ///
    /// This assumes the vec is not full.
    pub unsafe fn push_unchecked(&mut self, item: T) {
        // NOTE(ptr::write) the memory slot that we are about to write to is uninitialized. We
        // use `ptr::write` to avoid running `T`'s destructor on the uninitialized memory
        debug_assert!(!self.is_full());

        *self.buffer.get_unchecked_mut(self.len) = MaybeUninit::new(item);

        self.len += 1;
    }

    /// Shortens the vector, keeping the first `len` elements and dropping the rest.
    pub fn truncate(&mut self, len: usize) {
        // This is safe because:
        //
        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
        //   case avoids creating an invalid slice, and
        // * the `len` of the vector is shrunk before calling `drop_in_place`,
        //   such that no value will be dropped twice in case `drop_in_place`
        //   were to panic once (if it panics twice, the program aborts).
        unsafe {
            // Note: It's intentional that this is `>` and not `>=`.
            //       Changing it to `>=` has negative performance
            //       implications in some cases. See rust-lang/rust#78884 for more.
            if len > self.len {
                return;
            }
            let remaining_len = self.len - len;
            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
            self.len = len;
            ptr::drop_in_place(s);
        }
    }

    /// Resizes the Vec in-place so that len is equal to new_len.
    ///
    /// If new_len is greater than len, the Vec is extended by the
    /// difference, with each additional slot filled with value. If
    /// new_len is less than len, the Vec is simply truncated.
    ///
    /// See also [`resize_default`](Self::resize_default).
    pub fn resize(&mut self, new_len: usize, value: T) -> Result<(), ()>
    where
        T: Clone,
    {
        if new_len > self.capacity() {
            return Err(());
        }

        if new_len > self.len {
            while self.len < new_len {
                self.push(value.clone()).ok();
            }
        } else {
            self.truncate(new_len);
        }

        Ok(())
    }

    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
    ///
    /// If `new_len` is greater than `len`, the `Vec` is extended by the
    /// difference, with each additional slot filled with `Default::default()`.
    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
    ///
    /// See also [`resize`](Self::resize).
    pub fn resize_default(&mut self, new_len: usize) -> Result<(), ()>
    where
        T: Clone + Default,
    {
        self.resize(new_len, T::default())
    }

    /// Forces the length of the vector to `new_len`.
    ///
    /// This is a low-level operation that maintains none of the normal
    /// invariants of the type. Normally changing the length of a vector
    /// is done using one of the safe operations instead, such as
    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
    ///
    /// [`truncate`]: Self::truncate
    /// [`resize`]: Self::resize
    /// [`extend`]: core::iter::Extend
    /// [`clear`]: Self::clear
    ///
    /// # Safety
    ///
    /// - `new_len` must be less than or equal to [`capacity()`].
    /// - The elements at `old_len..new_len` must be initialized.
    ///
    /// [`capacity()`]: Self::capacity
    ///
    /// # Examples
    ///
    /// This method can be useful for situations in which the vector
    /// is serving as a buffer for other code, particularly over FFI:
    ///
    /// ```no_run
    /// # #![allow(dead_code)]
    /// use heapless::Vec;
    ///
    /// # // This is just a minimal skeleton for the doc example;
    /// # // don't use this as a starting point for a real library.
    /// # pub struct StreamWrapper { strm: *mut core::ffi::c_void }
    /// # const Z_OK: i32 = 0;
    /// # extern "C" {
    /// #     fn deflateGetDictionary(
    /// #         strm: *mut core::ffi::c_void,
    /// #         dictionary: *mut u8,
    /// #         dictLength: *mut usize,
    /// #     ) -> i32;
    /// # }
    /// # impl StreamWrapper {
    /// pub fn get_dictionary(&self) -> Option<Vec<u8, 32768>> {
    ///     // Per the FFI method's docs, "32768 bytes is always enough".
    ///     let mut dict = Vec::new();
    ///     let mut dict_length = 0;
    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
    ///     // 1. `dict_length` elements were initialized.
    ///     // 2. `dict_length` <= the capacity (32_768)
    ///     // which makes `set_len` safe to call.
    ///     unsafe {
    ///         // Make the FFI call...
    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
    ///         if r == Z_OK {
    ///             // ...and update the length to what was initialized.
    ///             dict.set_len(dict_length);
    ///             Some(dict)
    ///         } else {
    ///             None
    ///         }
    ///     }
    /// }
    /// # }
    /// ```
    ///
    /// While the following example is sound, there is a memory leak since
    /// the inner vectors were not freed prior to the `set_len` call:
    ///
    /// ```
    /// use core::iter::FromIterator;
    /// use heapless::Vec;
    ///
    /// let mut vec = Vec::<Vec<u8, 3>, 3>::from_iter(
    ///     [
    ///         Vec::from_iter([1, 0, 0].iter().cloned()),
    ///         Vec::from_iter([0, 1, 0].iter().cloned()),
    ///         Vec::from_iter([0, 0, 1].iter().cloned()),
    ///     ]
    ///     .iter()
    ///     .cloned()
    /// );
    /// // SAFETY:
    /// // 1. `old_len..0` is empty so no elements need to be initialized.
    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
    /// unsafe {
    ///     vec.set_len(0);
    /// }
    /// ```
    ///
    /// Normally, here, one would use [`clear`] instead to correctly drop
    /// the contents and thus not leak memory.
    pub unsafe fn set_len(&mut self, new_len: usize) {
        debug_assert!(new_len <= self.capacity());

        self.len = new_len
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///// use heapless::consts::*;
    ///
    /// let mut v: Vec<_, 8> = Vec::new();
    /// v.push("foo").unwrap();
    /// v.push("bar").unwrap();
    /// v.push("baz").unwrap();
    /// v.push("qux").unwrap();
    ///
    /// assert_eq!(v.swap_remove(1), "bar");
    /// assert_eq!(&*v, ["foo", "qux", "baz"]);
    ///
    /// assert_eq!(v.swap_remove(0), "foo");
    /// assert_eq!(&*v, ["baz", "qux"]);
    /// ```
    pub fn swap_remove(&mut self, index: usize) -> T {
        assert!(index < self.len);
        unsafe { self.swap_remove_unchecked(index) }
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// # Safety
    ///
    ///  Assumes `index` within bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut v: Vec<_, 8> = Vec::new();
    /// v.push("foo").unwrap();
    /// v.push("bar").unwrap();
    /// v.push("baz").unwrap();
    /// v.push("qux").unwrap();
    ///
    /// assert_eq!(unsafe { v.swap_remove_unchecked(1) }, "bar");
    /// assert_eq!(&*v, ["foo", "qux", "baz"]);
    ///
    /// assert_eq!(unsafe { v.swap_remove_unchecked(0) }, "foo");
    /// assert_eq!(&*v, ["baz", "qux"]);
    /// ```
    pub unsafe fn swap_remove_unchecked(&mut self, index: usize) -> T {
        let length = self.len();
        debug_assert!(index < length);
        let value = ptr::read(self.as_ptr().add(index));
        let base_ptr = self.as_mut_ptr();
        ptr::copy(base_ptr.add(length - 1), base_ptr.add(index), 1);
        self.len -= 1;
        value
    }

    /// Returns true if the vec is full
    #[inline]
    pub fn is_full(&self) -> bool {
        self.len == self.capacity()
    }

    /// Returns true if the vec is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns `true` if `needle` is a prefix of the Vec.
    ///
    /// Always returns `true` if `needle` is an empty slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let v: Vec<_, 8> = Vec::from_slice(b"abc").unwrap();
    /// assert_eq!(v.starts_with(b""), true);
    /// assert_eq!(v.starts_with(b"ab"), true);
    /// assert_eq!(v.starts_with(b"bc"), false);
    /// ```
    #[inline]
    pub fn starts_with(&self, needle: &[T]) -> bool
    where
        T: PartialEq,
    {
        let n = needle.len();
        self.len >= n && needle == &self[..n]
    }

    /// Returns `true` if `needle` is a suffix of the Vec.
    ///
    /// Always returns `true` if `needle` is an empty slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let v: Vec<_, 8> = Vec::from_slice(b"abc").unwrap();
    /// assert_eq!(v.ends_with(b""), true);
    /// assert_eq!(v.ends_with(b"ab"), false);
    /// assert_eq!(v.ends_with(b"bc"), true);
    /// ```
    #[inline]
    pub fn ends_with(&self, needle: &[T]) -> bool
    where
        T: PartialEq,
    {
        let (v, n) = (self.len(), needle.len());
        v >= n && needle == &self[v - n..]
    }

    /// Inserts an element at position `index` within the vector, shifting all
    /// elements after it to the right.
    ///
    /// Returns back the `element` if the vector is full.
    ///
    /// # Panics
    ///
    /// Panics if `index > len`.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3]).unwrap();
    /// vec.insert(1, 4);
    /// assert_eq!(vec, [1, 4, 2, 3]);
    /// vec.insert(4, 5);
    /// assert_eq!(vec, [1, 4, 2, 3, 5]);
    /// ```
    pub fn insert(&mut self, index: usize, element: T) -> Result<(), T> {
        let len = self.len();
        if index > len {
            panic!(
                "insertion index (is {}) should be <= len (is {})",
                index, len
            );
        }

        // check there's space for the new element
        if self.is_full() {
            return Err(element);
        }

        unsafe {
            // infallible
            // The spot to put the new value
            {
                let p = self.as_mut_ptr().add(index);
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy(p, p.offset(1), len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                ptr::write(p, element);
            }
            self.set_len(len + 1);
        }

        Ok(())
    }

    /// Removes and returns the element at position `index` within the vector,
    /// shifting all elements after it to the left.
    ///
    /// Note: Because this shifts over the remaining elements, it has a
    /// worst-case performance of *O*(*n*). If you don't need the order of
    /// elements to be preserved, use [`swap_remove`] instead. If you'd like to
    /// remove elements from the beginning of the `Vec`, consider using
    /// [`Deque::pop_front`] instead.
    ///
    /// [`swap_remove`]: Vec::swap_remove
    /// [`Deque::pop_front`]: crate::Deque::pop_front
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut v: Vec<_, 8> = Vec::from_slice(&[1, 2, 3]).unwrap();
    /// assert_eq!(v.remove(1), 2);
    /// assert_eq!(v, [1, 3]);
    /// ```
    pub fn remove(&mut self, index: usize) -> T {
        let len = self.len();
        if index >= len {
            panic!("removal index (is {}) should be < len (is {})", index, len);
        }
        unsafe {
            // infallible
            let ret;
            {
                // the place we are taking from.
                let ptr = self.as_mut_ptr().add(index);
                // copy it out, unsafely having a copy of the value on
                // the stack and in the vector at the same time.
                ret = ptr::read(ptr);

                // Shift everything down to fill in that spot.
                ptr::copy(ptr.offset(1), ptr, len - index - 1);
            }
            self.set_len(len - 1);
            ret
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
    /// This method operates in place, visiting each element exactly once in the
    /// original order, and preserves the order of the retained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4]).unwrap();
    /// vec.retain(|&x| x % 2 == 0);
    /// assert_eq!(vec, [2, 4]);
    /// ```
    ///
    /// Because the elements are visited exactly once in the original order,
    /// external state may be used to decide which elements to keep.
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4, 5]).unwrap();
    /// let keep = [false, true, true, false, true];
    /// let mut iter = keep.iter();
    /// vec.retain(|_| *iter.next().unwrap());
    /// assert_eq!(vec, [2, 3, 5]);
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> bool,
    {
        self.retain_mut(|elem| f(elem));
    }

    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
    ///
    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
    /// This method operates in place, visiting each element exactly once in the
    /// original order, and preserves the order of the retained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use heapless::Vec;
    ///
    /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4]).unwrap();
    /// vec.retain_mut(|x| if *x <= 3 {
    ///     *x += 1;
    ///     true
    /// } else {
    ///     false
    /// });
    /// assert_eq!(vec, [2, 3, 4]);
    /// ```
    pub fn retain_mut<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut T) -> bool,
    {
        let original_len = self.len();
        // Avoid double drop if the drop guard is not executed,
        // since we may make some holes during the process.
        unsafe { self.set_len(0) };

        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
        //      |<-              processed len   ->| ^- next to check
        //                  |<-  deleted cnt     ->|
        //      |<-              original_len                          ->|
        // Kept: Elements which predicate returns true on.
        // Hole: Moved or dropped element slot.
        // Unchecked: Unchecked valid elements.
        //
        // This drop guard will be invoked when predicate or `drop` of element panicked.
        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
        // In cases when predicate and `drop` never panick, it will be optimized out.
        struct BackshiftOnDrop<'a, T, const N: usize> {
            v: &'a mut Vec<T, N>,
            processed_len: usize,
            deleted_cnt: usize,
            original_len: usize,
        }

        impl<T, const N: usize> Drop for BackshiftOnDrop<'_, T, N> {
            fn drop(&mut self) {
                if self.deleted_cnt > 0 {
                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
                    unsafe {
                        ptr::copy(
                            self.v.as_ptr().add(self.processed_len),
                            self.v
                                .as_mut_ptr()
                                .add(self.processed_len - self.deleted_cnt),
                            self.original_len - self.processed_len,
                        );
                    }
                }
                // SAFETY: After filling holes, all items are in contiguous memory.
                unsafe {
                    self.v.set_len(self.original_len - self.deleted_cnt);
                }
            }
        }

        let mut g = BackshiftOnDrop {
            v: self,
            processed_len: 0,
            deleted_cnt: 0,
            original_len,
        };

        fn process_loop<F, T, const N: usize, const DELETED: bool>(
            original_len: usize,
            f: &mut F,
            g: &mut BackshiftOnDrop<'_, T, N>,
        ) where
            F: FnMut(&mut T) -> bool,
        {
            while g.processed_len != original_len {
                let p = g.v.as_mut_ptr();
                // SAFETY: Unchecked element must be valid.
                let cur = unsafe { &mut *p.add(g.processed_len) };
                if !f(cur) {
                    // Advance early to avoid double drop if `drop_in_place` panicked.
                    g.processed_len += 1;
                    g.deleted_cnt += 1;
                    // SAFETY: We never touch this element again after dropped.
                    unsafe { ptr::drop_in_place(cur) };
                    // We already advanced the counter.
                    if DELETED {
                        continue;
                    } else {
                        break;
                    }
                }
                if DELETED {
                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
                    // We use copy for move, and never touch this element again.
                    unsafe {
                        let hole_slot = p.add(g.processed_len - g.deleted_cnt);
                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
                    }
                }
                g.processed_len += 1;
            }
        }

        // Stage 1: Nothing was deleted.
        process_loop::<F, T, N, false>(original_len, &mut f, &mut g);

        // Stage 2: Some elements were deleted.
        process_loop::<F, T, N, true>(original_len, &mut f, &mut g);

        // All item are processed. This can be optimized to `set_len` by LLVM.
        drop(g);
    }
}

// Trait implementations

impl<T, const N: usize> Default for Vec<T, N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T, const N: usize> fmt::Debug for Vec<T, N>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        <[T] as fmt::Debug>::fmt(self, f)
    }
}

impl<const N: usize> fmt::Write for Vec<u8, N> {
    fn write_str(&mut self, s: &str) -> fmt::Result {
        match self.extend_from_slice(s.as_bytes()) {
            Ok(()) => Ok(()),
            Err(_) => Err(fmt::Error),
        }
    }
}

impl<T, const N: usize> Drop for Vec<T, N> {
    fn drop(&mut self) {
        // We drop each element used in the vector by turning into a &mut[T]
        unsafe {
            ptr::drop_in_place(self.as_mut_slice());
        }
    }
}

impl<'a, T: Clone, const N: usize> TryFrom<&'a [T]> for Vec<T, N> {
    type Error = ();

    fn try_from(slice: &'a [T]) -> Result<Self, Self::Error> {
        Vec::from_slice(slice)
    }
}

impl<T, const N: usize> Extend<T> for Vec<T, N> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = T>,
    {
        self.extend(iter)
    }
}

impl<'a, T, const N: usize> Extend<&'a T> for Vec<T, N>
where
    T: 'a + Copy,
{
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = &'a T>,
    {
        self.extend(iter.into_iter().cloned())
    }
}

impl<T, const N: usize> hash::Hash for Vec<T, N>
where
    T: core::hash::Hash,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        <[T] as hash::Hash>::hash(self, state)
    }
}

impl<'a, T, const N: usize> IntoIterator for &'a Vec<T, N> {
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T, const N: usize> IntoIterator for &'a mut Vec<T, N> {
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<T, const N: usize> FromIterator<T> for Vec<T, N> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = T>,
    {
        let mut vec = Vec::new();
        for i in iter {
            vec.push(i).ok().expect("Vec::from_iter overflow");
        }
        vec
    }
}

/// An iterator that moves out of an [`Vec`][`Vec`].
///
/// This struct is created by calling the `into_iter` method on [`Vec`][`Vec`].
pub struct IntoIter<T, const N: usize> {
    vec: Vec<T, N>,
    next: usize,
}

impl<T, const N: usize> Iterator for IntoIter<T, N> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        if self.next < self.vec.len() {
            let item = unsafe {
                (self.vec.buffer.get_unchecked_mut(self.next).as_ptr() as *const T).read()
            };
            self.next += 1;
            Some(item)
        } else {
            None
        }
    }
}

impl<T, const N: usize> Clone for IntoIter<T, N>
where
    T: Clone,
{
    fn clone(&self) -> Self {
        let mut vec = Vec::new();

        if self.next < self.vec.len() {
            let s = unsafe {
                slice::from_raw_parts(
                    (self.vec.buffer.as_ptr() as *const T).add(self.next),
                    self.vec.len() - self.next,
                )
            };
            vec.extend_from_slice(s).ok();
        }

        Self { vec, next: 0 }
    }
}

impl<T, const N: usize> Drop for IntoIter<T, N> {
    fn drop(&mut self) {
        unsafe {
            // Drop all the elements that have not been moved out of vec
            ptr::drop_in_place(&mut self.vec.as_mut_slice()[self.next..]);
            // Prevent dropping of other elements
            self.vec.len = 0;
        }
    }
}

impl<T, const N: usize> IntoIterator for Vec<T, N> {
    type Item = T;
    type IntoIter = IntoIter<T, N>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter { vec: self, next: 0 }
    }
}

impl<A, B, const N1: usize, const N2: usize> PartialEq<Vec<B, N2>> for Vec<A, N1>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<B, N2>) -> bool {
        <[A]>::eq(self, &**other)
    }
}

// Vec<A, N> == [B]
impl<A, B, const N: usize> PartialEq<[B]> for Vec<A, N>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &[B]) -> bool {
        <[A]>::eq(self, &other[..])
    }
}

// [B] == Vec<A, N>
impl<A, B, const N: usize> PartialEq<Vec<A, N>> for [B]
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<A, N>) -> bool {
        <[A]>::eq(other, &self[..])
    }
}

// Vec<A, N> == &[B]
impl<A, B, const N: usize> PartialEq<&[B]> for Vec<A, N>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &&[B]) -> bool {
        <[A]>::eq(self, &other[..])
    }
}

// &[B] == Vec<A, N>
impl<A, B, const N: usize> PartialEq<Vec<A, N>> for &[B]
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<A, N>) -> bool {
        <[A]>::eq(other, &self[..])
    }
}

// Vec<A, N> == &mut [B]
impl<A, B, const N: usize> PartialEq<&mut [B]> for Vec<A, N>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &&mut [B]) -> bool {
        <[A]>::eq(self, &other[..])
    }
}

// &mut [B] == Vec<A, N>
impl<A, B, const N: usize> PartialEq<Vec<A, N>> for &mut [B]
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<A, N>) -> bool {
        <[A]>::eq(other, &self[..])
    }
}

// Vec<A, N> == [B; M]
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<[B; M]> for Vec<A, N>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &[B; M]) -> bool {
        <[A]>::eq(self, &other[..])
    }
}

// [B; M] == Vec<A, N>
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<Vec<A, N>> for [B; M]
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<A, N>) -> bool {
        <[A]>::eq(other, &self[..])
    }
}

// Vec<A, N> == &[B; M]
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<&[B; M]> for Vec<A, N>
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &&[B; M]) -> bool {
        <[A]>::eq(self, &other[..])
    }
}

// &[B; M] == Vec<A, N>
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<Vec<A, N>> for &[B; M]
where
    A: PartialEq<B>,
{
    fn eq(&self, other: &Vec<A, N>) -> bool {
        <[A]>::eq(other, &self[..])
    }
}

// Implements Eq if underlying data is Eq
impl<T, const N: usize> Eq for Vec<T, N> where T: Eq {}

impl<T, const N1: usize, const N2: usize> PartialOrd<Vec<T, N2>> for Vec<T, N1>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Vec<T, N2>) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
}

impl<T, const N: usize> Ord for Vec<T, N>
where
    T: Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}

impl<T, const N: usize> ops::Deref for Vec<T, N> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T, const N: usize> ops::DerefMut for Vec<T, N> {
    fn deref_mut(&mut self) -> &mut [T] {
        self.as_mut_slice()
    }
}

impl<T, const N: usize> AsRef<Vec<T, N>> for Vec<T, N> {
    #[inline]
    fn as_ref(&self) -> &Self {
        self
    }
}

impl<T, const N: usize> AsMut<Vec<T, N>> for Vec<T, N> {
    #[inline]
    fn as_mut(&mut self) -> &mut Self {
        self
    }
}

impl<T, const N: usize> AsRef<[T]> for Vec<T, N> {
    #[inline]
    fn as_ref(&self) -> &[T] {
        self
    }
}

impl<T, const N: usize> AsMut<[T]> for Vec<T, N> {
    #[inline]
    fn as_mut(&mut self) -> &mut [T] {
        self
    }
}

impl<T, const N: usize> Clone for Vec<T, N>
where
    T: Clone,
{
    fn clone(&self) -> Self {
        self.clone()
    }
}

#[cfg(test)]
mod tests {
    use crate::Vec;
    use core::fmt::Write;

    #[test]
    fn static_new() {
        static mut _V: Vec<i32, 4> = Vec::new();
    }

    #[test]
    fn stack_new() {
        let mut _v: Vec<i32, 4> = Vec::new();
    }

    #[test]
    fn is_full_empty() {
        let mut v: Vec<i32, 4> = Vec::new();

        assert!(v.is_empty());
        assert!(!v.is_full());

        v.push(1).unwrap();
        assert!(!v.is_empty());
        assert!(!v.is_full());

        v.push(1).unwrap();
        assert!(!v.is_empty());
        assert!(!v.is_full());

        v.push(1).unwrap();
        assert!(!v.is_empty());
        assert!(!v.is_full());

        v.push(1).unwrap();
        assert!(!v.is_empty());
        assert!(v.is_full());
    }

    #[test]
    fn drop() {
        droppable!();

        {
            let mut v: Vec<Droppable, 2> = Vec::new();
            v.push(Droppable::new()).ok().unwrap();
            v.push(Droppable::new()).ok().unwrap();
            v.pop().unwrap();
        }

        assert_eq!(Droppable::count(), 0);

        {
            let mut v: Vec<Droppable, 2> = Vec::new();
            v.push(Droppable::new()).ok().unwrap();
            v.push(Droppable::new()).ok().unwrap();
        }

        assert_eq!(Droppable::count(), 0);
    }

    #[test]
    fn eq() {
        let mut xs: Vec<i32, 4> = Vec::new();
        let mut ys: Vec<i32, 8> = Vec::new();

        assert_eq!(xs, ys);

        xs.push(1).unwrap();
        ys.push(1).unwrap();

        assert_eq!(xs, ys);
    }

    #[test]
    fn cmp() {
        let mut xs: Vec<i32, 4> = Vec::new();
        let mut ys: Vec<i32, 4> = Vec::new();

        assert_eq!(xs, ys);

        xs.push(1).unwrap();
        ys.push(2).unwrap();

        assert!(xs < ys);
    }

    #[test]
    fn cmp_heterogenous_size() {
        let mut xs: Vec<i32, 4> = Vec::new();
        let mut ys: Vec<i32, 8> = Vec::new();

        assert_eq!(xs, ys);

        xs.push(1).unwrap();
        ys.push(2).unwrap();

        assert!(xs < ys);
    }

    #[test]
    fn cmp_with_arrays_and_slices() {
        let mut xs: Vec<i32, 12> = Vec::new();
        xs.push(1).unwrap();

        let array = [1];

        assert_eq!(xs, array);
        assert_eq!(array, xs);

        assert_eq!(xs, array.as_slice());
        assert_eq!(array.as_slice(), xs);

        assert_eq!(xs, &array);
        assert_eq!(&array, xs);

        let longer_array = [1; 20];

        assert_ne!(xs, longer_array);
        assert_ne!(longer_array, xs);
    }

    #[test]
    fn full() {
        let mut v: Vec<i32, 4> = Vec::new();

        v.push(0).unwrap();
        v.push(1).unwrap();
        v.push(2).unwrap();
        v.push(3).unwrap();

        assert!(v.push(4).is_err());
    }

    #[test]
    fn iter() {
        let mut v: Vec<i32, 4> = Vec::new();

        v.push(0).unwrap();
        v.push(1).unwrap();
        v.push(2).unwrap();
        v.push(3).unwrap();

        let mut items = v.iter();

        assert_eq!(items.next(), Some(&0));
        assert_eq!(items.next(), Some(&1));
        assert_eq!(items.next(), Some(&2));
        assert_eq!(items.next(), Some(&3));
        assert_eq!(items.next(), None);
    }

    #[test]
    fn iter_mut() {
        let mut v: Vec<i32, 4> = Vec::new();

        v.push(0).unwrap();
        v.push(1).unwrap();
        v.push(2).unwrap();
        v.push(3).unwrap();

        let mut items = v.iter_mut();

        assert_eq!(items.next(), Some(&mut 0));
        assert_eq!(items.next(), Some(&mut 1));
        assert_eq!(items.next(), Some(&mut 2));
        assert_eq!(items.next(), Some(&mut 3));
        assert_eq!(items.next(), None);
    }

    #[test]
    fn collect_from_iter() {
        let slice = &[1, 2, 3];
        let vec: Vec<i32, 4> = slice.iter().cloned().collect();
        assert_eq!(&vec, slice);
    }

    #[test]
    #[should_panic]
    fn collect_from_iter_overfull() {
        let slice = &[1, 2, 3];
        let _vec = slice.iter().cloned().collect::<Vec<_, 2>>();
    }

    #[test]
    fn iter_move() {
        let mut v: Vec<i32, 4> = Vec::new();
        v.push(0).unwrap();
        v.push(1).unwrap();
        v.push(2).unwrap();
        v.push(3).unwrap();

        let mut items = v.into_iter();

        assert_eq!(items.next(), Some(0));
        assert_eq!(items.next(), Some(1));
        assert_eq!(items.next(), Some(2));
        assert_eq!(items.next(), Some(3));
        assert_eq!(items.next(), None);
    }

    #[test]
    fn iter_move_drop() {
        droppable!();

        {
            let mut vec: Vec<Droppable, 2> = Vec::new();
            vec.push(Droppable::new()).ok().unwrap();
            vec.push(Droppable::new()).ok().unwrap();
            let mut items = vec.into_iter();
            // Move all
            let _ = items.next();
            let _ = items.next();
        }

        assert_eq!(Droppable::count(), 0);

        {
            let mut vec: Vec<Droppable, 2> = Vec::new();
            vec.push(Droppable::new()).ok().unwrap();
            vec.push(Droppable::new()).ok().unwrap();
            let _items = vec.into_iter();
            // Move none
        }

        assert_eq!(Droppable::count(), 0);

        {
            let mut vec: Vec<Droppable, 2> = Vec::new();
            vec.push(Droppable::new()).ok().unwrap();
            vec.push(Droppable::new()).ok().unwrap();
            let mut items = vec.into_iter();
            let _ = items.next(); // Move partly
        }

        assert_eq!(Droppable::count(), 0);
    }

    #[test]
    fn push_and_pop() {
        let mut v: Vec<i32, 4> = Vec::new();
        assert_eq!(v.len(), 0);

        assert_eq!(v.pop(), None);
        assert_eq!(v.len(), 0);

        v.push(0).unwrap();
        assert_eq!(v.len(), 1);

        assert_eq!(v.pop(), Some(0));
        assert_eq!(v.len(), 0);

        assert_eq!(v.pop(), None);
        assert_eq!(v.len(), 0);
    }

    #[test]
    fn resize_size_limit() {
        let mut v: Vec<u8, 4> = Vec::new();

        v.resize(0, 0).unwrap();
        v.resize(4, 0).unwrap();
        v.resize(5, 0).err().expect("full");
    }

    #[test]
    fn resize_length_cases() {
        let mut v: Vec<u8, 4> = Vec::new();

        assert_eq!(v.len(), 0);

        // Grow by 1
        v.resize(1, 0).unwrap();
        assert_eq!(v.len(), 1);

        // Grow by 2
        v.resize(3, 0).unwrap();
        assert_eq!(v.len(), 3);

        // Resize to current size
        v.resize(3, 0).unwrap();
        assert_eq!(v.len(), 3);

        // Shrink by 1
        v.resize(2, 0).unwrap();
        assert_eq!(v.len(), 2);

        // Shrink by 2
        v.resize(0, 0).unwrap();
        assert_eq!(v.len(), 0);
    }

    #[test]
    fn resize_contents() {
        let mut v: Vec<u8, 4> = Vec::new();

        // New entries take supplied value when growing
        v.resize(1, 17).unwrap();
        assert_eq!(v[0], 17);

        // Old values aren't changed when growing
        v.resize(2, 18).unwrap();
        assert_eq!(v[0], 17);
        assert_eq!(v[1], 18);

        // Old values aren't changed when length unchanged
        v.resize(2, 0).unwrap();
        assert_eq!(v[0], 17);
        assert_eq!(v[1], 18);

        // Old values aren't changed when shrinking
        v.resize(1, 0).unwrap();
        assert_eq!(v[0], 17);
    }

    #[test]
    fn resize_default() {
        let mut v: Vec<u8, 4> = Vec::new();

        // resize_default is implemented using resize, so just check the
        // correct value is being written.
        v.resize_default(1).unwrap();
        assert_eq!(v[0], 0);
    }

    #[test]
    fn write() {
        let mut v: Vec<u8, 4> = Vec::new();
        write!(v, "{:x}", 1234).unwrap();
        assert_eq!(&v[..], b"4d2");
    }

    #[test]
    fn extend_from_slice() {
        let mut v: Vec<u8, 4> = Vec::new();
        assert_eq!(v.len(), 0);
        v.extend_from_slice(&[1, 2]).unwrap();
        assert_eq!(v.len(), 2);
        assert_eq!(v.as_slice(), &[1, 2]);
        v.extend_from_slice(&[3]).unwrap();
        assert_eq!(v.len(), 3);
        assert_eq!(v.as_slice(), &[1, 2, 3]);
        assert!(v.extend_from_slice(&[4, 5]).is_err());
        assert_eq!(v.len(), 3);
        assert_eq!(v.as_slice(), &[1, 2, 3]);
    }

    #[test]
    fn from_slice() {
        // Successful construction
        let v: Vec<u8, 4> = Vec::from_slice(&[1, 2, 3]).unwrap();
        assert_eq!(v.len(), 3);
        assert_eq!(v.as_slice(), &[1, 2, 3]);

        // Slice too large
        assert!(Vec::<u8, 2>::from_slice(&[1, 2, 3]).is_err());
    }

    #[test]
    fn starts_with() {
        let v: Vec<_, 8> = Vec::from_slice(b"ab").unwrap();
        assert!(v.starts_with(&[]));
        assert!(v.starts_with(b""));
        assert!(v.starts_with(b"a"));
        assert!(v.starts_with(b"ab"));
        assert!(!v.starts_with(b"abc"));
        assert!(!v.starts_with(b"ba"));
        assert!(!v.starts_with(b"b"));
    }

    #[test]
    fn ends_with() {
        let v: Vec<_, 8> = Vec::from_slice(b"ab").unwrap();
        assert!(v.ends_with(&[]));
        assert!(v.ends_with(b""));
        assert!(v.ends_with(b"b"));
        assert!(v.ends_with(b"ab"));
        assert!(!v.ends_with(b"abc"));
        assert!(!v.ends_with(b"ba"));
        assert!(!v.ends_with(b"a"));
    }

    #[test]
    fn zero_capacity() {
        let mut v: Vec<u8, 0> = Vec::new();
        // Validate capacity
        assert_eq!(v.capacity(), 0);

        // Make sure there is no capacity
        assert!(v.push(1).is_err());

        // Validate length
        assert_eq!(v.len(), 0);

        // Validate pop
        assert_eq!(v.pop(), None);

        // Validate slice
        assert_eq!(v.as_slice(), &[]);

        // Validate empty
        assert!(v.is_empty());

        // Validate full
        assert!(v.is_full());
    }
}