1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
//! Minimal and reusable non-blocking I/O layer
//!
//! The ultimate goal of this crate is *code reuse*. With this crate you can
//! write *core* I/O APIs that can then be adapted to operate in either blocking
//! or non-blocking manner. Furthermore those APIs are not tied to a particular
//! asynchronous model and can be adapted to work with the `futures` model or
//! with the `async` / `await` model.
//!
//! # Core idea
//!
//! The [`WouldBlock`](enum.Error.html) error variant signals that the operation
//! can't be completed *right now* and would need to block to complete.
//! [`WouldBlock`](enum.Error.html) is a special error in the sense that's not
//! *fatal*; the operation can still be completed by retrying again later.
//!
//! [`nb::Result`](type.Result.html) is based on the API of
//! [`std::io::Result`](https://doc.rust-lang.org/std/io/type.Result.html),
//! which has a `WouldBlock` variant in its
//! [`ErrorKind`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html).
//!
//! We can map [`WouldBlock`](enum.Error.html) to different blocking and
//! non-blocking models:
//!
//! - In blocking mode: [`WouldBlock`](enum.Error.html) means try again right
//! now (i.e. busy wait)
//! - In `futures` mode: [`WouldBlock`](enum.Error.html) means
//! [`Async::NotReady`](https://docs.rs/futures)
//! - In `await` mode: [`WouldBlock`](enum.Error.html) means `yield`
//! (suspend the generator)
//!
//! # How to use this crate
//!
//! Application specific errors can be put inside the `Other` variant in the
//! [`nb::Error`](enum.Error.html) enum.
//!
//! So in your API instead of returning `Result<T, MyError>` return
//! `nb::Result<T, MyError>`
//!
//! ```
//! enum MyError {
//! ThisError,
//! ThatError,
//! // ..
//! }
//!
//! // This is a blocking function, so it returns a normal `Result`
//! fn before() -> Result<(), MyError> {
//! // ..
//! # Ok(())
//! }
//!
//! // This is now a potentially (read: *non*) blocking function so it returns `nb::Result`
//! // instead of blocking
//! fn after() -> nb::Result<(), MyError> {
//! // ..
//! # Ok(())
//! }
//! ```
//!
//! You can use `Infallible` to signal that some API has no fatal
//! errors but may block:
//!
//! ```
//! use core::convert::Infallible;
//!
//! // This returns `Ok(())` or `Err(nb::Error::WouldBlock)`
//! fn maybe_blocking_api() -> nb::Result<(), Infallible> {
//! // ..
//! # Ok(())
//! }
//! ```
//!
//! Once your API uses [`nb::Result`] you can leverage the [`block!`], macro
//! to adapt it for blocking operation, or handle scheduling yourself.
//!
//! [`block!`]: macro.block.html
//! [`nb::Result`]: type.Result.html
//!
//! # Examples
//!
//! ## A Core I/O API
//!
//! Imagine the code (crate) below represents a Hardware Abstraction Layer for some microcontroller
//! (or microcontroller family).
//!
//! *In this and the following examples let's assume for simplicity that peripherals are treated
//! as global singletons and that no preemption is possible (i.e. interrupts are disabled).*
//!
//! ```
//! # use core::convert::Infallible;
//! // This is the `hal` crate
//! use nb;
//!
//! /// An LED
//! pub struct Led;
//!
//! impl Led {
//! pub fn off(&self) {
//! // ..
//! }
//! pub fn on(&self) {
//! // ..
//! }
//! }
//!
//! /// Serial interface
//! pub struct Serial;
//! pub enum Error {
//! Overrun,
//! // ..
//! }
//!
//! impl Serial {
//! /// Reads a single byte from the serial interface
//! pub fn read(&self) -> nb::Result<u8, Error> {
//! // ..
//! # Ok(0)
//! }
//!
//! /// Writes a single byte to the serial interface
//! pub fn write(&self, byte: u8) -> nb::Result<(), Error> {
//! // ..
//! # Ok(())
//! }
//! }
//!
//! /// A timer used for timeouts
//! pub struct Timer;
//!
//! impl Timer {
//! /// Waits until the timer times out
//! pub fn wait(&self) -> nb::Result<(), Infallible> {
//! //^ NOTE the `Infallible` indicates that this operation can block but has no
//! // other form of error
//!
//! // ..
//! # Ok(())
//! }
//! }
//! ```
//!
//! ## Blocking mode
//!
//! Turn on an LED for one second and *then* loops back serial data.
//!
//! ```
//! use core::convert::Infallible;
//! use nb::block;
//!
//! use hal::{Led, Serial, Timer};
//!
//! # fn main() -> Result<(), Infallible> {
//! // Turn the LED on for one second
//! Led.on();
//! block!(Timer.wait())?;
//! Led.off();
//!
//! // Serial interface loopback
//! # return Ok(());
//! loop {
//! let byte = block!(Serial.read())?;
//! block!(Serial.write(byte))?;
//! }
//! # }
//!
//! # mod hal {
//! # use nb;
//! # use core::convert::Infallible;
//! # pub struct Led;
//! # impl Led {
//! # pub fn off(&self) {}
//! # pub fn on(&self) {}
//! # }
//! # pub struct Serial;
//! # impl Serial {
//! # pub fn read(&self) -> nb::Result<u8, Infallible> { Ok(0) }
//! # pub fn write(&self, _: u8) -> nb::Result<(), Infallible> { Ok(()) }
//! # }
//! # pub struct Timer;
//! # impl Timer {
//! # pub fn wait(&self) -> nb::Result<(), Infallible> { Ok(()) }
//! # }
//! # }
//! ```
//!
//! # Features
//!
//! - `defmt-0-3` - unstable feature which adds [`defmt::Format`] impl for [`Error`].
#![no_std]
use core::fmt;
/// A non-blocking result
pub type Result<T, E> = ::core::result::Result<T, Error<E>>;
/// A non-blocking error
///
/// The main use of this enum is to add a `WouldBlock` variant to an existing
/// error enum.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Error<E> {
/// A different kind of error
Other(E),
/// This operation requires blocking behavior to complete
WouldBlock,
}
#[cfg(feature = "defmt-0-3")]
impl<E> defmt::Format for Error<E>
where
E: defmt::Format,
{
fn format(&self, f: defmt::Formatter) {
match *self {
Error::Other(ref e) => defmt::Format::format(e, f),
Error::WouldBlock => defmt::write!(f, "WouldBlock",),
}
}
}
impl<E> fmt::Debug for Error<E>
where
E: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Other(ref e) => fmt::Debug::fmt(e, f),
Error::WouldBlock => f.write_str("WouldBlock"),
}
}
}
impl<E> Error<E> {
/// Maps an `Error<E>` to `Error<T>` by applying a function to a contained
/// `Error::Other` value, leaving an `Error::WouldBlock` value untouched.
pub fn map<T, F>(self, op: F) -> Error<T>
where
F: FnOnce(E) -> T,
{
match self {
Error::Other(e) => Error::Other(op(e)),
Error::WouldBlock => Error::WouldBlock,
}
}
}
impl<E> From<E> for Error<E> {
fn from(error: E) -> Error<E> {
Error::Other(error)
}
}
/// Turns the non-blocking expression `$e` into a blocking operation.
///
/// This is accomplished by continuously calling the expression `$e` until it no
/// longer returns `Error::WouldBlock`
///
/// # Input
///
/// An expression `$e` that evaluates to `nb::Result<T, E>`
///
/// # Output
///
/// - `Ok(t)` if `$e` evaluates to `Ok(t)`
/// - `Err(e)` if `$e` evaluates to `Err(nb::Error::Other(e))`
#[macro_export]
macro_rules! block {
($e:expr) => {
loop {
#[allow(unreachable_patterns)]
match $e {
Err($crate::Error::Other(e)) =>
{
#[allow(unreachable_code)]
break Err(e)
}
Err($crate::Error::WouldBlock) => {}
Ok(x) => break Ok(x),
}
}
};
}