#![doc(html_root_url = "https://docs.rs/num-rational/0.4")]
#![no_std]
#![allow(clippy::suspicious_arithmetic_impl)]
#![allow(clippy::suspicious_op_assign_impl)]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
use core::cmp;
use core::fmt;
use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex};
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub};
use core::str::FromStr;
#[cfg(feature = "std")]
use std::error::Error;
#[cfg(feature = "num-bigint")]
use num_bigint::{BigInt, BigUint, Sign, ToBigInt};
use num_integer::Integer;
use num_traits::float::FloatCore;
use num_traits::{
Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, ConstOne, ConstZero, FromPrimitive,
Inv, Num, NumCast, One, Pow, Signed, ToPrimitive, Unsigned, Zero,
};
mod pow;
#[derive(Copy, Clone, Debug)]
#[allow(missing_docs)]
pub struct Ratio<T> {
numer: T,
denom: T,
}
#[deprecated(
since = "0.4.0",
note = "it's better to use a specific size, like `Rational32` or `Rational64`"
)]
pub type Rational = Ratio<isize>;
pub type Rational32 = Ratio<i32>;
pub type Rational64 = Ratio<i64>;
#[cfg(feature = "num-bigint")]
pub type BigRational = Ratio<BigInt>;
impl<T> Ratio<T> {
#[inline]
pub const fn new_raw(numer: T, denom: T) -> Ratio<T> {
Ratio { numer, denom }
}
#[inline]
pub fn into_raw(self) -> (T, T) {
(self.numer, self.denom)
}
#[inline]
pub const fn numer(&self) -> &T {
&self.numer
}
#[inline]
pub const fn denom(&self) -> &T {
&self.denom
}
}
impl<T: Clone + Integer> Ratio<T> {
#[inline]
pub fn new(numer: T, denom: T) -> Ratio<T> {
let mut ret = Ratio::new_raw(numer, denom);
ret.reduce();
ret
}
#[inline]
pub fn from_integer(t: T) -> Ratio<T> {
Ratio::new_raw(t, One::one())
}
#[inline]
pub fn to_integer(&self) -> T {
self.trunc().numer
}
#[inline]
pub fn is_integer(&self) -> bool {
self.denom.is_one()
}
fn reduce(&mut self) {
if self.denom.is_zero() {
panic!("denominator == 0");
}
if self.numer.is_zero() {
self.denom.set_one();
return;
}
if self.numer == self.denom {
self.set_one();
return;
}
let g: T = self.numer.gcd(&self.denom);
#[inline]
fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) {
let y = core::mem::replace(x, T::zero());
*x = f(y);
}
replace_with(&mut self.numer, |x| x / g.clone());
replace_with(&mut self.denom, |x| x / g);
if self.denom < T::zero() {
replace_with(&mut self.numer, |x| T::zero() - x);
replace_with(&mut self.denom, |x| T::zero() - x);
}
}
pub fn reduced(&self) -> Ratio<T> {
let mut ret = self.clone();
ret.reduce();
ret
}
#[inline]
pub fn recip(&self) -> Ratio<T> {
self.clone().into_recip()
}
#[inline]
fn into_recip(self) -> Ratio<T> {
match self.numer.cmp(&T::zero()) {
cmp::Ordering::Equal => panic!("division by zero"),
cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer),
cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer),
}
}
#[inline]
pub fn floor(&self) -> Ratio<T> {
if *self < Zero::zero() {
let one: T = One::one();
Ratio::from_integer(
(self.numer.clone() - self.denom.clone() + one) / self.denom.clone(),
)
} else {
Ratio::from_integer(self.numer.clone() / self.denom.clone())
}
}
#[inline]
pub fn ceil(&self) -> Ratio<T> {
if *self < Zero::zero() {
Ratio::from_integer(self.numer.clone() / self.denom.clone())
} else {
let one: T = One::one();
Ratio::from_integer(
(self.numer.clone() + self.denom.clone() - one) / self.denom.clone(),
)
}
}
#[inline]
pub fn round(&self) -> Ratio<T> {
let zero: Ratio<T> = Zero::zero();
let one: T = One::one();
let two: T = one.clone() + one.clone();
let mut fractional = self.fract();
if fractional < zero {
fractional = zero - fractional
};
let half_or_larger = if fractional.denom.is_even() {
fractional.numer >= fractional.denom / two
} else {
fractional.numer >= (fractional.denom / two) + one
};
if half_or_larger {
let one: Ratio<T> = One::one();
if *self >= Zero::zero() {
self.trunc() + one
} else {
self.trunc() - one
}
} else {
self.trunc()
}
}
#[inline]
pub fn trunc(&self) -> Ratio<T> {
Ratio::from_integer(self.numer.clone() / self.denom.clone())
}
#[inline]
pub fn fract(&self) -> Ratio<T> {
Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
}
#[inline]
pub fn pow(&self, expon: i32) -> Ratio<T>
where
for<'a> &'a T: Pow<u32, Output = T>,
{
Pow::pow(self, expon)
}
}
#[cfg(feature = "num-bigint")]
impl Ratio<BigInt> {
pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> {
if !f.is_finite() {
return None;
}
let (mantissa, exponent, sign) = f.integer_decode();
let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus };
if exponent < 0 {
let one: BigInt = One::one();
let denom: BigInt = one << ((-exponent) as usize);
let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
} else {
let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
numer <<= exponent as usize;
Some(Ratio::from_integer(BigInt::from_biguint(
bigint_sign,
numer,
)))
}
}
}
impl<T: Clone + Integer> Default for Ratio<T> {
fn default() -> Self {
Ratio::zero()
}
}
impl<T> From<T> for Ratio<T>
where
T: Clone + Integer,
{
fn from(x: T) -> Ratio<T> {
Ratio::from_integer(x)
}
}
impl<T> From<(T, T)> for Ratio<T>
where
T: Clone + Integer,
{
fn from(pair: (T, T)) -> Ratio<T> {
Ratio::new(pair.0, pair.1)
}
}
impl<T: Clone + Integer> Ord for Ratio<T> {
#[inline]
fn cmp(&self, other: &Self) -> cmp::Ordering {
if self.denom == other.denom {
let ord = self.numer.cmp(&other.numer);
return if self.denom < T::zero() {
ord.reverse()
} else {
ord
};
}
if self.numer == other.numer {
if self.numer.is_zero() {
return cmp::Ordering::Equal;
}
let ord = self.denom.cmp(&other.denom);
return if self.numer < T::zero() {
ord
} else {
ord.reverse()
};
}
let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
match self_int.cmp(&other_int) {
cmp::Ordering::Greater => cmp::Ordering::Greater,
cmp::Ordering::Less => cmp::Ordering::Less,
cmp::Ordering::Equal => {
match (self_rem.is_zero(), other_rem.is_zero()) {
(true, true) => cmp::Ordering::Equal,
(true, false) => cmp::Ordering::Less,
(false, true) => cmp::Ordering::Greater,
(false, false) => {
let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
self_recip.cmp(&other_recip).reverse()
}
}
}
}
}
}
impl<T: Clone + Integer> PartialOrd for Ratio<T> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<T: Clone + Integer> PartialEq for Ratio<T> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == cmp::Ordering::Equal
}
}
impl<T: Clone + Integer> Eq for Ratio<T> {}
impl<T: Clone + Integer + Hash> Hash for Ratio<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
recurse(&self.numer, &self.denom, state);
fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) {
if !denom.is_zero() {
let (int, rem) = numer.div_mod_floor(denom);
int.hash(state);
recurse(denom, &rem, state);
} else {
denom.hash(state);
}
}
}
}
mod iter_sum_product {
use crate::Ratio;
use core::iter::{Product, Sum};
use num_integer::Integer;
use num_traits::{One, Zero};
impl<T: Integer + Clone> Sum for Ratio<T> {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Ratio<T>>,
{
iter.fold(Self::zero(), |sum, num| sum + num)
}
}
impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Ratio<T>>,
{
iter.fold(Self::zero(), |sum, num| sum + num)
}
}
impl<T: Integer + Clone> Product for Ratio<T> {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Ratio<T>>,
{
iter.fold(Self::one(), |prod, num| prod * num)
}
}
impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Ratio<T>>,
{
iter.fold(Self::one(), |prod, num| prod * num)
}
}
}
mod opassign {
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
use crate::Ratio;
use num_integer::Integer;
use num_traits::NumAssign;
impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> {
fn add_assign(&mut self, other: Ratio<T>) {
if self.denom == other.denom {
self.numer += other.numer
} else {
let lcm = self.denom.lcm(&other.denom);
let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
let rhs_numer = other.numer * (lcm.clone() / other.denom);
self.numer = lhs_numer + rhs_numer;
self.denom = lcm;
}
self.reduce();
}
}
impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> {
fn div_assign(&mut self, other: Ratio<T>) {
let gcd_ac = self.numer.gcd(&other.numer);
let gcd_bd = self.denom.gcd(&other.denom);
self.numer /= gcd_ac.clone();
self.numer *= other.denom / gcd_bd.clone();
self.denom /= gcd_bd;
self.denom *= other.numer / gcd_ac;
self.reduce(); }
}
impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> {
fn mul_assign(&mut self, other: Ratio<T>) {
let gcd_ad = self.numer.gcd(&other.denom);
let gcd_bc = self.denom.gcd(&other.numer);
self.numer /= gcd_ad.clone();
self.numer *= other.numer / gcd_bc.clone();
self.denom /= gcd_bc;
self.denom *= other.denom / gcd_ad;
self.reduce(); }
}
impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> {
fn rem_assign(&mut self, other: Ratio<T>) {
if self.denom == other.denom {
self.numer %= other.numer
} else {
let lcm = self.denom.lcm(&other.denom);
let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
let rhs_numer = other.numer * (lcm.clone() / other.denom);
self.numer = lhs_numer % rhs_numer;
self.denom = lcm;
}
self.reduce();
}
}
impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> {
fn sub_assign(&mut self, other: Ratio<T>) {
if self.denom == other.denom {
self.numer -= other.numer
} else {
let lcm = self.denom.lcm(&other.denom);
let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone());
let rhs_numer = other.numer * (lcm.clone() / other.denom);
self.numer = lhs_numer - rhs_numer;
self.denom = lcm;
}
self.reduce();
}
}
impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> {
fn add_assign(&mut self, other: T) {
self.numer += self.denom.clone() * other;
self.reduce();
}
}
impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> {
fn div_assign(&mut self, other: T) {
let gcd = self.numer.gcd(&other);
self.numer /= gcd.clone();
self.denom *= other / gcd;
self.reduce(); }
}
impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> {
fn mul_assign(&mut self, other: T) {
let gcd = self.denom.gcd(&other);
self.denom /= gcd.clone();
self.numer *= other / gcd;
self.reduce(); }
}
impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> {
fn rem_assign(&mut self, other: T) {
self.numer %= self.denom.clone() * other;
self.reduce();
}
}
impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> {
fn sub_assign(&mut self, other: T) {
self.numer -= self.denom.clone() * other;
self.reduce();
}
}
macro_rules! forward_op_assign {
(impl $imp:ident, $method:ident) => {
impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> {
#[inline]
fn $method(&mut self, other: &Ratio<T>) {
self.$method(other.clone())
}
}
impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> {
#[inline]
fn $method(&mut self, other: &T) {
self.$method(other.clone())
}
}
};
}
forward_op_assign!(impl AddAssign, add_assign);
forward_op_assign!(impl DivAssign, div_assign);
forward_op_assign!(impl MulAssign, mul_assign);
forward_op_assign!(impl RemAssign, rem_assign);
forward_op_assign!(impl SubAssign, sub_assign);
}
macro_rules! forward_ref_ref_binop {
(impl $imp:ident, $method:ident) => {
impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> {
type Output = Ratio<T>;
#[inline]
fn $method(self, other: &'b Ratio<T>) -> Ratio<T> {
self.clone().$method(other.clone())
}
}
impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> {
type Output = Ratio<T>;
#[inline]
fn $method(self, other: &'b T) -> Ratio<T> {
self.clone().$method(other.clone())
}
}
};
}
macro_rules! forward_ref_val_binop {
(impl $imp:ident, $method:ident) => {
impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn $method(self, other: Ratio<T>) -> Ratio<T> {
self.clone().$method(other)
}
}
impl<'a, T> $imp<T> for &'a Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn $method(self, other: T) -> Ratio<T> {
self.clone().$method(other)
}
}
};
}
macro_rules! forward_val_ref_binop {
(impl $imp:ident, $method:ident) => {
impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn $method(self, other: &Ratio<T>) -> Ratio<T> {
self.$method(other.clone())
}
}
impl<'a, T> $imp<&'a T> for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn $method(self, other: &T) -> Ratio<T> {
self.$method(other.clone())
}
}
};
}
macro_rules! forward_all_binop {
(impl $imp:ident, $method:ident) => {
forward_ref_ref_binop!(impl $imp, $method);
forward_ref_val_binop!(impl $imp, $method);
forward_val_ref_binop!(impl $imp, $method);
};
}
forward_all_binop!(impl Mul, mul);
impl<T> Mul<Ratio<T>> for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn mul(self, rhs: Ratio<T>) -> Ratio<T> {
let gcd_ad = self.numer.gcd(&rhs.denom);
let gcd_bc = self.denom.gcd(&rhs.numer);
Ratio::new(
self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()),
self.denom / gcd_bc * (rhs.denom / gcd_ad),
)
}
}
impl<T> Mul<T> for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn mul(self, rhs: T) -> Ratio<T> {
let gcd = self.denom.gcd(&rhs);
Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd)
}
}
forward_all_binop!(impl Div, div);
impl<T> Div<Ratio<T>> for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn div(self, rhs: Ratio<T>) -> Ratio<T> {
let gcd_ac = self.numer.gcd(&rhs.numer);
let gcd_bd = self.denom.gcd(&rhs.denom);
Ratio::new(
self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()),
self.denom / gcd_bd * (rhs.numer / gcd_ac),
)
}
}
impl<T> Div<T> for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn div(self, rhs: T) -> Ratio<T> {
let gcd = self.numer.gcd(&rhs);
Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd))
}
}
macro_rules! arith_impl {
(impl $imp:ident, $method:ident) => {
forward_all_binop!(impl $imp, $method);
impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
type Output = Ratio<T>;
#[inline]
fn $method(self, rhs: Ratio<T>) -> Ratio<T> {
if self.denom == rhs.denom {
return Ratio::new(self.numer.$method(rhs.numer), rhs.denom);
}
let lcm = self.denom.lcm(&rhs.denom);
let lhs_numer = self.numer * (lcm.clone() / self.denom);
let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom);
Ratio::new(lhs_numer.$method(rhs_numer), lcm)
}
}
impl<T: Clone + Integer> $imp<T> for Ratio<T> {
type Output = Ratio<T>;
#[inline]
fn $method(self, rhs: T) -> Ratio<T> {
Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom)
}
}
};
}
arith_impl!(impl Add, add);
arith_impl!(impl Sub, sub);
arith_impl!(impl Rem, rem);
impl<T> CheckedMul for Ratio<T>
where
T: Clone + Integer + CheckedMul,
{
#[inline]
fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
let gcd_ad = self.numer.gcd(&rhs.denom);
let gcd_bc = self.denom.gcd(&rhs.numer);
Some(Ratio::new(
(self.numer.clone() / gcd_ad.clone())
.checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?,
(self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?,
))
}
}
impl<T> CheckedDiv for Ratio<T>
where
T: Clone + Integer + CheckedMul,
{
#[inline]
fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
if rhs.is_zero() {
return None;
}
let (numer, denom) = if self.denom == rhs.denom {
(self.numer.clone(), rhs.numer.clone())
} else if self.numer == rhs.numer {
(rhs.denom.clone(), self.denom.clone())
} else {
let gcd_ac = self.numer.gcd(&rhs.numer);
let gcd_bd = self.denom.gcd(&rhs.denom);
(
(self.numer.clone() / gcd_ac.clone())
.checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?,
(self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?,
)
};
if denom.is_zero() {
None
} else if numer.is_zero() {
Some(Self::zero())
} else if numer == denom {
Some(Self::one())
} else {
let g = numer.gcd(&denom);
let numer = numer / g.clone();
let denom = denom / g;
let raw = if denom < T::zero() {
let n1 = T::zero() - T::one();
Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?)
} else {
Ratio::new_raw(numer, denom)
};
Some(raw)
}
}
}
macro_rules! checked_arith_impl {
(impl $imp:ident, $method:ident) => {
impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> {
#[inline]
fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> {
let gcd = self.denom.clone().gcd(&rhs.denom);
let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?;
let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?;
let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?;
Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm))
}
}
};
}
checked_arith_impl!(impl CheckedAdd, checked_add);
checked_arith_impl!(impl CheckedSub, checked_sub);
impl<T> Neg for Ratio<T>
where
T: Clone + Integer + Neg<Output = T>,
{
type Output = Ratio<T>;
#[inline]
fn neg(self) -> Ratio<T> {
Ratio::new_raw(-self.numer, self.denom)
}
}
impl<'a, T> Neg for &'a Ratio<T>
where
T: Clone + Integer + Neg<Output = T>,
{
type Output = Ratio<T>;
#[inline]
fn neg(self) -> Ratio<T> {
-self.clone()
}
}
impl<T> Inv for Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn inv(self) -> Ratio<T> {
self.recip()
}
}
impl<'a, T> Inv for &'a Ratio<T>
where
T: Clone + Integer,
{
type Output = Ratio<T>;
#[inline]
fn inv(self) -> Ratio<T> {
self.recip()
}
}
impl<T: ConstZero + ConstOne> Ratio<T> {
pub const ZERO: Self = Self::new_raw(T::ZERO, T::ONE);
}
impl<T: Clone + Integer + ConstZero + ConstOne> ConstZero for Ratio<T> {
const ZERO: Self = Self::ZERO;
}
impl<T: Clone + Integer> Zero for Ratio<T> {
#[inline]
fn zero() -> Ratio<T> {
Ratio::new_raw(Zero::zero(), One::one())
}
#[inline]
fn is_zero(&self) -> bool {
self.numer.is_zero()
}
#[inline]
fn set_zero(&mut self) {
self.numer.set_zero();
self.denom.set_one();
}
}
impl<T: ConstOne> Ratio<T> {
pub const ONE: Self = Self::new_raw(T::ONE, T::ONE);
}
impl<T: Clone + Integer + ConstOne> ConstOne for Ratio<T> {
const ONE: Self = Self::ONE;
}
impl<T: Clone + Integer> One for Ratio<T> {
#[inline]
fn one() -> Ratio<T> {
Ratio::new_raw(One::one(), One::one())
}
#[inline]
fn is_one(&self) -> bool {
self.numer == self.denom
}
#[inline]
fn set_one(&mut self) {
self.numer.set_one();
self.denom.set_one();
}
}
impl<T: Clone + Integer> Num for Ratio<T> {
type FromStrRadixErr = ParseRatioError;
fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
if s.splitn(2, '/').count() == 2 {
let mut parts = s.splitn(2, '/').map(|ss| {
T::from_str_radix(ss, radix).map_err(|_| ParseRatioError {
kind: RatioErrorKind::ParseError,
})
});
let numer: T = parts.next().unwrap()?;
let denom: T = parts.next().unwrap()?;
if denom.is_zero() {
Err(ParseRatioError {
kind: RatioErrorKind::ZeroDenominator,
})
} else {
Ok(Ratio::new(numer, denom))
}
} else {
Err(ParseRatioError {
kind: RatioErrorKind::ParseError,
})
}
}
}
impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
#[inline]
fn abs(&self) -> Ratio<T> {
if self.is_negative() {
-self.clone()
} else {
self.clone()
}
}
#[inline]
fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
if *self <= *other {
Zero::zero()
} else {
self - other
}
}
#[inline]
fn signum(&self) -> Ratio<T> {
if self.is_positive() {
Self::one()
} else if self.is_zero() {
Self::zero()
} else {
-Self::one()
}
}
#[inline]
fn is_positive(&self) -> bool {
(self.numer.is_positive() && self.denom.is_positive())
|| (self.numer.is_negative() && self.denom.is_negative())
}
#[inline]
fn is_negative(&self) -> bool {
(self.numer.is_negative() && self.denom.is_positive())
|| (self.numer.is_positive() && self.denom.is_negative())
}
}
macro_rules! impl_formatting {
($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => {
impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> {
#[cfg(feature = "std")]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let pre_pad = if self.denom.is_one() {
format!($fmt_str, self.numer)
} else {
if f.alternate() {
format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom)
} else {
format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom)
}
};
if let Some(pre_pad) = pre_pad.strip_prefix("-") {
f.pad_integral(false, $prefix, pre_pad)
} else {
f.pad_integral(true, $prefix, &pre_pad)
}
}
#[cfg(not(feature = "std"))]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let plus = if f.sign_plus() && self.numer >= T::zero() {
"+"
} else {
""
};
if self.denom.is_one() {
if f.alternate() {
write!(f, concat!("{}", $fmt_alt), plus, self.numer)
} else {
write!(f, concat!("{}", $fmt_str), plus, self.numer)
}
} else {
if f.alternate() {
write!(
f,
concat!("{}", $fmt_alt, "/", $fmt_alt),
plus, self.numer, self.denom
)
} else {
write!(
f,
concat!("{}", $fmt_str, "/", $fmt_str),
plus, self.numer, self.denom
)
}
}
}
}
};
}
impl_formatting!(Display, "", "{}", "{:#}");
impl_formatting!(Octal, "0o", "{:o}", "{:#o}");
impl_formatting!(Binary, "0b", "{:b}", "{:#b}");
impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}");
impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}");
impl_formatting!(LowerExp, "", "{:e}", "{:#e}");
impl_formatting!(UpperExp, "", "{:E}", "{:#E}");
impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
type Err = ParseRatioError;
fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
let mut split = s.splitn(2, '/');
let n = split.next().ok_or(ParseRatioError {
kind: RatioErrorKind::ParseError,
})?;
let num = FromStr::from_str(n).map_err(|_| ParseRatioError {
kind: RatioErrorKind::ParseError,
})?;
let d = split.next().unwrap_or("1");
let den = FromStr::from_str(d).map_err(|_| ParseRatioError {
kind: RatioErrorKind::ParseError,
})?;
if Zero::is_zero(&den) {
Err(ParseRatioError {
kind: RatioErrorKind::ZeroDenominator,
})
} else {
Ok(Ratio::new(num, den))
}
}
}
impl<T> From<Ratio<T>> for (T, T) {
fn from(val: Ratio<T>) -> Self {
(val.numer, val.denom)
}
}
#[cfg(feature = "serde")]
impl<T> serde::Serialize for Ratio<T>
where
T: serde::Serialize + Clone + Integer + PartialOrd,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
(self.numer(), self.denom()).serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl<'de, T> serde::Deserialize<'de> for Ratio<T>
where
T: serde::Deserialize<'de> + Clone + Integer + PartialOrd,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
use serde::de::Error;
use serde::de::Unexpected;
let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?;
if denom.is_zero() {
Err(Error::invalid_value(
Unexpected::Signed(0),
&"a ratio with non-zero denominator",
))
} else {
Ok(Ratio::new_raw(numer, denom))
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ParseRatioError {
kind: RatioErrorKind,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum RatioErrorKind {
ParseError,
ZeroDenominator,
}
impl fmt::Display for ParseRatioError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.kind.description().fmt(f)
}
}
#[cfg(feature = "std")]
impl Error for ParseRatioError {
#[allow(deprecated)]
fn description(&self) -> &str {
self.kind.description()
}
}
impl RatioErrorKind {
fn description(&self) -> &'static str {
match *self {
RatioErrorKind::ParseError => "failed to parse integer",
RatioErrorKind::ZeroDenominator => "zero value denominator",
}
}
}
#[cfg(feature = "num-bigint")]
impl FromPrimitive for Ratio<BigInt> {
fn from_i64(n: i64) -> Option<Self> {
Some(Ratio::from_integer(n.into()))
}
fn from_i128(n: i128) -> Option<Self> {
Some(Ratio::from_integer(n.into()))
}
fn from_u64(n: u64) -> Option<Self> {
Some(Ratio::from_integer(n.into()))
}
fn from_u128(n: u128) -> Option<Self> {
Some(Ratio::from_integer(n.into()))
}
fn from_f32(n: f32) -> Option<Self> {
Ratio::from_float(n)
}
fn from_f64(n: f64) -> Option<Self> {
Ratio::from_float(n)
}
}
macro_rules! from_primitive_integer {
($typ:ty, $approx:ident) => {
impl FromPrimitive for Ratio<$typ> {
fn from_i64(n: i64) -> Option<Self> {
<$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer)
}
fn from_i128(n: i128) -> Option<Self> {
<$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer)
}
fn from_u64(n: u64) -> Option<Self> {
<$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer)
}
fn from_u128(n: u128) -> Option<Self> {
<$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer)
}
fn from_f32(n: f32) -> Option<Self> {
$approx(n, 10e-20, 30)
}
fn from_f64(n: f64) -> Option<Self> {
$approx(n, 10e-20, 30)
}
}
};
}
from_primitive_integer!(i8, approximate_float);
from_primitive_integer!(i16, approximate_float);
from_primitive_integer!(i32, approximate_float);
from_primitive_integer!(i64, approximate_float);
from_primitive_integer!(i128, approximate_float);
from_primitive_integer!(isize, approximate_float);
from_primitive_integer!(u8, approximate_float_unsigned);
from_primitive_integer!(u16, approximate_float_unsigned);
from_primitive_integer!(u32, approximate_float_unsigned);
from_primitive_integer!(u64, approximate_float_unsigned);
from_primitive_integer!(u128, approximate_float_unsigned);
from_primitive_integer!(usize, approximate_float_unsigned);
impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> {
pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> {
let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20");
approximate_float(f, epsilon, 30)
}
}
impl<T: Integer + Unsigned + Bounded + NumCast + Clone> Ratio<T> {
pub fn approximate_float_unsigned<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> {
let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20");
approximate_float_unsigned(f, epsilon, 30)
}
}
fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
where
T: Integer + Signed + Bounded + NumCast + Clone,
F: FloatCore + NumCast,
{
let negative = val.is_sign_negative();
let abs_val = val.abs();
let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?;
Some(if negative { r.neg() } else { r })
}
fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
where
T: Integer + Bounded + NumCast + Clone,
F: FloatCore + NumCast,
{
if val < F::zero() || val.is_nan() {
return None;
}
let mut q = val;
let mut n0 = T::zero();
let mut d0 = T::one();
let mut n1 = T::one();
let mut d1 = T::zero();
let t_max = T::max_value();
let t_max_f = <F as NumCast>::from(t_max.clone())?;
let epsilon = t_max_f.recip();
if q > t_max_f {
return None;
}
for _ in 0..max_iterations {
let a = match <T as NumCast>::from(q) {
None => break,
Some(a) => a,
};
let a_f = match <F as NumCast>::from(a.clone()) {
None => break,
Some(a_f) => a_f,
};
let f = q - a_f;
if !a.is_zero()
&& (n1 > t_max.clone() / a.clone()
|| d1 > t_max.clone() / a.clone()
|| a.clone() * n1.clone() > t_max.clone() - n0.clone()
|| a.clone() * d1.clone() > t_max.clone() - d0.clone())
{
break;
}
let n = a.clone() * n1.clone() + n0.clone();
let d = a.clone() * d1.clone() + d0.clone();
n0 = n1;
d0 = d1;
n1 = n.clone();
d1 = d.clone();
let g = Integer::gcd(&n1, &d1);
if !g.is_zero() {
n1 = n1 / g.clone();
d1 = d1 / g.clone();
}
let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) {
(Some(n_f), Some(d_f)) => (n_f, d_f),
_ => break,
};
if (n_f / d_f - val).abs() < max_error {
break;
}
if f < epsilon {
break;
}
q = f.recip();
}
if d1.is_zero() {
return None;
}
Some(Ratio::new(n1, d1))
}
#[cfg(not(feature = "num-bigint"))]
macro_rules! to_primitive_small {
($($type_name:ty)*) => ($(
impl ToPrimitive for Ratio<$type_name> {
fn to_i64(&self) -> Option<i64> {
self.to_integer().to_i64()
}
fn to_i128(&self) -> Option<i128> {
self.to_integer().to_i128()
}
fn to_u64(&self) -> Option<u64> {
self.to_integer().to_u64()
}
fn to_u128(&self) -> Option<u128> {
self.to_integer().to_u128()
}
fn to_f64(&self) -> Option<f64> {
let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap();
if float.is_nan() {
None
} else {
Some(float)
}
}
}
)*)
}
#[cfg(not(feature = "num-bigint"))]
to_primitive_small!(u8 i8 u16 i16 u32 i32);
#[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))]
to_primitive_small!(usize isize);
#[cfg(not(feature = "num-bigint"))]
macro_rules! to_primitive_64 {
($($type_name:ty)*) => ($(
impl ToPrimitive for Ratio<$type_name> {
fn to_i64(&self) -> Option<i64> {
self.to_integer().to_i64()
}
fn to_i128(&self) -> Option<i128> {
self.to_integer().to_i128()
}
fn to_u64(&self) -> Option<u64> {
self.to_integer().to_u64()
}
fn to_u128(&self) -> Option<u128> {
self.to_integer().to_u128()
}
fn to_f64(&self) -> Option<f64> {
let float = ratio_to_f64(
self.numer as i128,
self.denom as i128
);
if float.is_nan() {
None
} else {
Some(float)
}
}
}
)*)
}
#[cfg(not(feature = "num-bigint"))]
to_primitive_64!(u64 i64);
#[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))]
to_primitive_64!(usize isize);
#[cfg(feature = "num-bigint")]
impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> {
fn to_i64(&self) -> Option<i64> {
self.to_integer().to_i64()
}
fn to_i128(&self) -> Option<i128> {
self.to_integer().to_i128()
}
fn to_u64(&self) -> Option<u64> {
self.to_integer().to_u64()
}
fn to_u128(&self) -> Option<u128> {
self.to_integer().to_u128()
}
fn to_f64(&self) -> Option<f64> {
let float = match (self.numer.to_i64(), self.denom.to_i64()) {
(Some(numer), Some(denom)) => ratio_to_f64(
<i128 as From<_>>::from(numer),
<i128 as From<_>>::from(denom),
),
_ => {
let numer: BigInt = self.numer.to_bigint()?;
let denom: BigInt = self.denom.to_bigint()?;
ratio_to_f64(numer, denom)
}
};
if float.is_nan() {
None
} else {
Some(float)
}
}
}
trait Bits {
fn bits(&self) -> u64;
}
#[cfg(feature = "num-bigint")]
impl Bits for BigInt {
fn bits(&self) -> u64 {
self.bits()
}
}
impl Bits for i128 {
fn bits(&self) -> u64 {
(128 - self.wrapping_abs().leading_zeros()).into()
}
}
fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>(
numer: T,
denom: T,
) -> f64 {
use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX};
assert_eq!(
RADIX, 2,
"only floating point implementations with radix 2 are supported"
);
const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS;
const MIN_EXACT_INT: i64 = -MAX_EXACT_INT;
let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap();
if !flo_sign.is_normal() {
return flo_sign;
}
if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) {
let exact = MIN_EXACT_INT..=MAX_EXACT_INT;
if exact.contains(&n) && exact.contains(&d) {
return n.to_f64().unwrap() / d.to_f64().unwrap();
}
}
let mut numer = numer.abs();
let mut denom = denom.abs();
let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) {
Some(diff) => (true, diff),
None => (false, denom.bits() - numer.bits()),
};
if is_diff_positive && absolute_diff > MAX_EXP as u64 {
return INFINITY * flo_sign;
}
if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 {
return 0.0 * flo_sign;
}
let diff = if is_diff_positive {
absolute_diff.to_isize().unwrap()
} else {
-absolute_diff.to_isize().unwrap()
};
let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2;
if shift >= 0 {
denom <<= shift as usize
} else {
numer <<= -shift as usize
};
let (quotient, remainder) = numer.div_rem(&denom);
let mut quotient = quotient.to_u64().unwrap();
let n_rounding_bits = {
let quotient_bits = 64 - quotient.leading_zeros() as isize;
let subnormal_bits = MIN_EXP as isize - shift;
quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize
} as usize;
debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3);
let rounding_bit_mask = (1u64 << n_rounding_bits) - 1;
let ls_bit = quotient & (1u64 << n_rounding_bits) != 0;
let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0;
let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0;
if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) {
quotient += 1u64 << n_rounding_bits;
}
quotient &= !rounding_bit_mask;
let q_float = quotient as f64 * flo_sign;
ldexp(q_float, shift as i32)
}
fn ldexp(x: f64, exp: i32) -> f64 {
use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX};
assert_eq!(
RADIX, 2,
"only floating point implementations with radix 2 are supported"
);
const EXPONENT_MASK: u64 = 0x7ff << 52;
const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe;
const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32;
if x.is_zero() || x.is_infinite() || x.is_nan() {
return x;
}
if exp > 3 * MAX_EXP {
return INFINITY * x.signum();
} else if exp < -3 * MAX_EXP {
return 0.0 * x.signum();
}
let (bits, curr_exp) = if !x.is_normal() {
let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER);
let bits = normal_x.to_bits();
(
bits,
((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER,
)
} else {
let bits = x.to_bits();
let curr_exp = (bits & EXPONENT_MASK) >> 52;
(bits, curr_exp as i32)
};
let new_exp = curr_exp + exp;
if new_exp > MAX_UNSIGNED_EXPONENT {
INFINITY * x.signum()
} else if new_exp > 0 {
let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52);
f64::from_bits(new_bits)
} else if new_exp >= -(MANTISSA_DIGITS as i32) {
let new_exp = new_exp + MIN_SUBNORMAL_POWER;
debug_assert!(new_exp >= 0);
let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52);
f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER)
} else {
return 0.0 * x.signum();
}
}
#[cfg(test)]
#[cfg(feature = "std")]
fn hash<T: Hash>(x: &T) -> u64 {
use std::collections::hash_map::RandomState;
use std::hash::BuildHasher;
let mut hasher = <RandomState as BuildHasher>::Hasher::new();
x.hash(&mut hasher);
hasher.finish()
}
#[cfg(test)]
mod test {
use super::ldexp;
#[cfg(feature = "num-bigint")]
use super::{BigInt, BigRational};
use super::{Ratio, Rational64};
use core::f64;
use core::i32;
use core::i64;
use core::str::FromStr;
use num_integer::Integer;
use num_traits::ToPrimitive;
use num_traits::{FromPrimitive, One, Pow, Signed, Zero};
pub const _0: Rational64 = Ratio { numer: 0, denom: 1 };
pub const _1: Rational64 = Ratio { numer: 1, denom: 1 };
pub const _2: Rational64 = Ratio { numer: 2, denom: 1 };
pub const _NEG2: Rational64 = Ratio {
numer: -2,
denom: 1,
};
pub const _8: Rational64 = Ratio { numer: 8, denom: 1 };
pub const _15: Rational64 = Ratio {
numer: 15,
denom: 1,
};
pub const _16: Rational64 = Ratio {
numer: 16,
denom: 1,
};
pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 };
pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 };
pub const _1_15: Rational64 = Ratio {
numer: 1,
denom: 15,
};
pub const _1_16: Rational64 = Ratio {
numer: 1,
denom: 16,
};
pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 };
pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 };
pub const _NEG1_2: Rational64 = Ratio {
numer: -1,
denom: 2,
};
pub const _1_NEG2: Rational64 = Ratio {
numer: 1,
denom: -2,
};
pub const _NEG1_NEG2: Rational64 = Ratio {
numer: -1,
denom: -2,
};
pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 };
pub const _NEG1_3: Rational64 = Ratio {
numer: -1,
denom: 3,
};
pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 };
pub const _NEG2_3: Rational64 = Ratio {
numer: -2,
denom: 3,
};
pub const _MIN: Rational64 = Ratio {
numer: i64::MIN,
denom: 1,
};
pub const _MIN_P1: Rational64 = Ratio {
numer: i64::MIN + 1,
denom: 1,
};
pub const _MAX: Rational64 = Ratio {
numer: i64::MAX,
denom: 1,
};
pub const _MAX_M1: Rational64 = Ratio {
numer: i64::MAX - 1,
denom: 1,
};
pub const _BILLION: Rational64 = Ratio {
numer: 1_000_000_000,
denom: 1,
};
#[cfg(feature = "num-bigint")]
pub fn to_big(n: Rational64) -> BigRational {
Ratio::new(
FromPrimitive::from_i64(n.numer).unwrap(),
FromPrimitive::from_i64(n.denom).unwrap(),
)
}
#[cfg(not(feature = "num-bigint"))]
pub fn to_big(n: Rational64) -> Rational64 {
Ratio::new(
FromPrimitive::from_i64(n.numer).unwrap(),
FromPrimitive::from_i64(n.denom).unwrap(),
)
}
#[test]
fn test_test_constants() {
assert_eq!(_0, Zero::zero());
assert_eq!(_1, One::one());
assert_eq!(_2, Ratio::from_integer(2));
assert_eq!(_1_2, Ratio::new(1, 2));
assert_eq!(_3_2, Ratio::new(3, 2));
assert_eq!(_NEG1_2, Ratio::new(-1, 2));
assert_eq!(_2, From::from(2));
}
#[test]
fn test_new_reduce() {
assert_eq!(Ratio::new(2, 2), One::one());
assert_eq!(Ratio::new(0, i32::MIN), Zero::zero());
assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one());
}
#[test]
#[should_panic]
fn test_new_zero() {
let _a = Ratio::new(1, 0);
}
#[test]
fn test_approximate_float() {
assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2)));
assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2)));
assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1)));
assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1)));
assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100)));
assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100)));
assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2)));
assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1)));
assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1)));
assert_eq!(Ratio::<i8>::from_f32(127.5f32), None);
assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2)));
assert_eq!(
Ratio::<i8>::from_f32(-126.5f32),
Some(Ratio::new(-126i8, 1))
);
assert_eq!(
Ratio::<i8>::from_f32(-127.0f32),
Some(Ratio::new(-127i8, 1))
);
assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None);
assert_eq!(Ratio::<u8>::from_f32(-127f32), None);
assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1)));
assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2)));
assert_eq!(Ratio::<u8>::from_f32(256f32), None);
assert_eq!(Ratio::<i64>::from_f64(-10e200), None);
assert_eq!(Ratio::<i64>::from_f64(10e200), None);
assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None);
assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None);
assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None);
assert_eq!(
Ratio::<i64>::from_f64(f64::EPSILON),
Some(Ratio::new(1, 4503599627370496))
);
assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1)));
assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1)));
}
#[test]
#[allow(clippy::eq_op)]
fn test_cmp() {
assert!(_0 == _0 && _1 == _1);
assert!(_0 != _1 && _1 != _0);
assert!(_0 < _1 && !(_1 < _0));
assert!(_1 > _0 && !(_0 > _1));
assert!(_0 <= _0 && _1 <= _1);
assert!(_0 <= _1 && !(_1 <= _0));
assert!(_0 >= _0 && _1 >= _1);
assert!(_1 >= _0 && !(_0 >= _1));
let _0_2: Rational64 = Ratio::new_raw(0, 2);
assert_eq!(_0, _0_2);
}
#[test]
fn test_cmp_overflow() {
use core::cmp::Ordering;
let big = Ratio::new(128u8, 1);
let small = big.recip();
assert!(big > small);
let ratios = [
Ratio::new(125_i8, 127_i8),
Ratio::new(63_i8, 64_i8),
Ratio::new(124_i8, 125_i8),
Ratio::new(125_i8, 126_i8),
Ratio::new(126_i8, 127_i8),
Ratio::new(127_i8, 126_i8),
];
fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
#[cfg(feature = "std")]
println!("comparing {} and {}", a, b);
assert_eq!(a.cmp(&b), ord);
assert_eq!(b.cmp(&a), ord.reverse());
}
for (i, &a) in ratios.iter().enumerate() {
check_cmp(a, a, Ordering::Equal);
check_cmp(-a, a, Ordering::Less);
for &b in &ratios[i + 1..] {
check_cmp(a, b, Ordering::Less);
check_cmp(-a, -b, Ordering::Greater);
check_cmp(a.recip(), b.recip(), Ordering::Greater);
check_cmp(-a.recip(), -b.recip(), Ordering::Less);
}
}
}
#[test]
fn test_to_integer() {
assert_eq!(_0.to_integer(), 0);
assert_eq!(_1.to_integer(), 1);
assert_eq!(_2.to_integer(), 2);
assert_eq!(_1_2.to_integer(), 0);
assert_eq!(_3_2.to_integer(), 1);
assert_eq!(_NEG1_2.to_integer(), 0);
}
#[test]
fn test_numer() {
assert_eq!(_0.numer(), &0);
assert_eq!(_1.numer(), &1);
assert_eq!(_2.numer(), &2);
assert_eq!(_1_2.numer(), &1);
assert_eq!(_3_2.numer(), &3);
assert_eq!(_NEG1_2.numer(), &(-1));
}
#[test]
fn test_denom() {
assert_eq!(_0.denom(), &1);
assert_eq!(_1.denom(), &1);
assert_eq!(_2.denom(), &1);
assert_eq!(_1_2.denom(), &2);
assert_eq!(_3_2.denom(), &2);
assert_eq!(_NEG1_2.denom(), &2);
}
#[test]
fn test_is_integer() {
assert!(_0.is_integer());
assert!(_1.is_integer());
assert!(_2.is_integer());
assert!(!_1_2.is_integer());
assert!(!_3_2.is_integer());
assert!(!_NEG1_2.is_integer());
}
#[cfg(not(feature = "std"))]
use core::fmt::{self, Write};
#[cfg(not(feature = "std"))]
#[derive(Debug)]
struct NoStdTester {
cursor: usize,
buf: [u8; NoStdTester::BUF_SIZE],
}
#[cfg(not(feature = "std"))]
impl NoStdTester {
fn new() -> NoStdTester {
NoStdTester {
buf: [0; Self::BUF_SIZE],
cursor: 0,
}
}
fn clear(&mut self) {
self.buf = [0; Self::BUF_SIZE];
self.cursor = 0;
}
const WRITE_ERR: &'static str = "Formatted output too long";
const BUF_SIZE: usize = 32;
}
#[cfg(not(feature = "std"))]
impl Write for NoStdTester {
fn write_str(&mut self, s: &str) -> fmt::Result {
for byte in s.bytes() {
self.buf[self.cursor] = byte;
self.cursor += 1;
if self.cursor >= self.buf.len() {
return Err(fmt::Error {});
}
}
Ok(())
}
}
#[cfg(not(feature = "std"))]
impl PartialEq<str> for NoStdTester {
fn eq(&self, other: &str) -> bool {
let other = other.as_bytes();
for index in 0..self.cursor {
if self.buf.get(index) != other.get(index) {
return false;
}
}
true
}
}
macro_rules! assert_fmt_eq {
($fmt_args:expr, $string:expr) => {
#[cfg(not(feature = "std"))]
{
let mut tester = NoStdTester::new();
write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR);
assert_eq!(tester, *$string);
tester.clear();
}
#[cfg(feature = "std")]
{
assert_eq!(std::fmt::format($fmt_args), $string);
}
};
}
#[test]
fn test_show() {
assert_fmt_eq!(format_args!("{}", _2), "2");
assert_fmt_eq!(format_args!("{:+}", _2), "+2");
assert_fmt_eq!(format_args!("{:-}", _2), "2");
assert_fmt_eq!(format_args!("{}", _1_2), "1/2");
assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); assert_fmt_eq!(format_args!("{}", _0), "0");
assert_fmt_eq!(format_args!("{}", -_2), "-2");
assert_fmt_eq!(format_args!("{:+}", -_2), "-2");
assert_fmt_eq!(format_args!("{:b}", _2), "10");
assert_fmt_eq!(format_args!("{:#b}", _2), "0b10");
assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10");
assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10");
assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10");
assert_fmt_eq!(format_args!("{:b}", _0), "0");
assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:010b}", _1_2), "0000001/10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10");
let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8);
assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10");
assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001");
assert_fmt_eq!(format_args!("{:o}", _8), "10");
assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10");
assert_fmt_eq!(format_args!("{:o}", _0), "0");
assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:010o}", _1_8), "0000001/10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10");
assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2");
assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2");
assert_fmt_eq!(format_args!("{:x}", _16), "10");
assert_fmt_eq!(format_args!("{:x}", _15), "f");
assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10");
assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f");
assert_fmt_eq!(format_args!("{:x}", _0), "0");
assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:010x}", _1_16), "0000001/10");
#[cfg(feature = "std")]
assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10");
assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2");
assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2");
assert_fmt_eq!(format_args!("{:X}", _16), "10");
assert_fmt_eq!(format_args!("{:X}", _15), "F");
assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10");
assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F");
assert_fmt_eq!(format_args!("{:X}", _0), "0");
assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10");
#[cfg(feature = "std")]
assert_eq!(format!("{:010X}", _1_16), "0000001/10");
#[cfg(feature = "std")]
assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10");
assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2");
assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2");
assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0");
assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0");
assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0");
assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9");
assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9");
assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9");
assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9");
assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0");
assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0");
assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0");
assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9");
assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9");
assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9");
assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9");
}
mod arith {
use super::super::{Ratio, Rational64};
use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2};
use core::fmt::Debug;
use num_integer::Integer;
use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign};
#[test]
fn test_add() {
fn test(a: Rational64, b: Rational64, c: Rational64) {
assert_eq!(a + b, c);
assert_eq!(
{
let mut x = a;
x += b;
x
},
c
);
assert_eq!(to_big(a) + to_big(b), to_big(c));
assert_eq!(a.checked_add(&b), Some(c));
assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c)));
}
fn test_assign(a: Rational64, b: i64, c: Rational64) {
assert_eq!(a + b, c);
assert_eq!(
{
let mut x = a;
x += b;
x
},
c
);
}
test(_1, _1_2, _3_2);
test(_1, _1, _2);
test(_1_2, _3_2, _2);
test(_1_2, _NEG1_2, _0);
test_assign(_1_2, 1, _3_2);
}
#[test]
fn test_add_overflow() {
fn test_add_typed_overflow<T>()
where
T: Integer + Bounded + Clone + Debug + NumAssign,
{
let _1_max = Ratio::new(T::one(), T::max_value());
let _2_max = Ratio::new(T::one() + T::one(), T::max_value());
assert_eq!(_1_max.clone() + _1_max.clone(), _2_max);
assert_eq!(
{
let mut tmp = _1_max.clone();
tmp += _1_max;
tmp
},
_2_max
);
}
test_add_typed_overflow::<u8>();
test_add_typed_overflow::<u16>();
test_add_typed_overflow::<u32>();
test_add_typed_overflow::<u64>();
test_add_typed_overflow::<usize>();
test_add_typed_overflow::<u128>();
test_add_typed_overflow::<i8>();
test_add_typed_overflow::<i16>();
test_add_typed_overflow::<i32>();
test_add_typed_overflow::<i64>();
test_add_typed_overflow::<isize>();
test_add_typed_overflow::<i128>();
}
#[test]
fn test_sub() {
fn test(a: Rational64, b: Rational64, c: Rational64) {
assert_eq!(a - b, c);
assert_eq!(
{
let mut x = a;
x -= b;
x
},
c
);
assert_eq!(to_big(a) - to_big(b), to_big(c));
assert_eq!(a.checked_sub(&b), Some(c));
assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c)));
}
fn test_assign(a: Rational64, b: i64, c: Rational64) {
assert_eq!(a - b, c);
assert_eq!(
{
let mut x = a;
x -= b;
x
},
c
);
}
test(_1, _1_2, _1_2);
test(_3_2, _1_2, _1);
test(_1, _NEG1_2, _3_2);
test_assign(_1_2, 1, _NEG1_2);
}
#[test]
fn test_sub_overflow() {
fn test_sub_typed_overflow<T>()
where
T: Integer + Bounded + Clone + Debug + NumAssign,
{
let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value());
assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer));
{
let mut tmp: Ratio<T> = _1_max.clone();
tmp -= _1_max;
assert!(T::is_zero(&tmp.numer));
}
}
test_sub_typed_overflow::<u8>();
test_sub_typed_overflow::<u16>();
test_sub_typed_overflow::<u32>();
test_sub_typed_overflow::<u64>();
test_sub_typed_overflow::<usize>();
test_sub_typed_overflow::<u128>();
test_sub_typed_overflow::<i8>();
test_sub_typed_overflow::<i16>();
test_sub_typed_overflow::<i32>();
test_sub_typed_overflow::<i64>();
test_sub_typed_overflow::<isize>();
test_sub_typed_overflow::<i128>();
}
#[test]
fn test_mul() {
fn test(a: Rational64, b: Rational64, c: Rational64) {
assert_eq!(a * b, c);
assert_eq!(
{
let mut x = a;
x *= b;
x
},
c
);
assert_eq!(to_big(a) * to_big(b), to_big(c));
assert_eq!(a.checked_mul(&b), Some(c));
assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c)));
}
fn test_assign(a: Rational64, b: i64, c: Rational64) {
assert_eq!(a * b, c);
assert_eq!(
{
let mut x = a;
x *= b;
x
},
c
);
}
test(_1, _1_2, _1_2);
test(_1_2, _3_2, Ratio::new(3, 4));
test(_1_2, _NEG1_2, Ratio::new(-1, 4));
test_assign(_1_2, 2, _1);
}
#[test]
fn test_mul_overflow() {
fn test_mul_typed_overflow<T>()
where
T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul,
{
let two = T::one() + T::one();
let _3 = T::one() + T::one() + T::one();
let big = T::max_value() / two.clone() / two.clone() * two.clone();
let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone());
let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone());
assert_eq!(None, big.clone().checked_mul(&_3.clone()));
let expected = Ratio::new(T::one(), big / two.clone() * _3.clone());
assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone());
assert_eq!(
Some(expected.clone()),
_1_big.clone().checked_mul(&_2_3.clone())
);
assert_eq!(expected, {
let mut tmp = _1_big;
tmp *= _2_3;
tmp
});
let big = T::max_value() / two / _3.clone() * _3.clone() + T::one();
assert_eq!(None, big.clone().checked_mul(&_3.clone()));
let big_3 = Ratio::new(big.clone(), _3.clone());
let expected = Ratio::new(big, T::one());
assert_eq!(expected, big_3.clone() * _3.clone());
assert_eq!(expected, {
let mut tmp = big_3;
tmp *= _3;
tmp
});
}
test_mul_typed_overflow::<u16>();
test_mul_typed_overflow::<u8>();
test_mul_typed_overflow::<u32>();
test_mul_typed_overflow::<u64>();
test_mul_typed_overflow::<usize>();
test_mul_typed_overflow::<u128>();
test_mul_typed_overflow::<i8>();
test_mul_typed_overflow::<i16>();
test_mul_typed_overflow::<i32>();
test_mul_typed_overflow::<i64>();
test_mul_typed_overflow::<isize>();
test_mul_typed_overflow::<i128>();
}
#[test]
fn test_div() {
fn test(a: Rational64, b: Rational64, c: Rational64) {
assert_eq!(a / b, c);
assert_eq!(
{
let mut x = a;
x /= b;
x
},
c
);
assert_eq!(to_big(a) / to_big(b), to_big(c));
assert_eq!(a.checked_div(&b), Some(c));
assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c)));
}
fn test_assign(a: Rational64, b: i64, c: Rational64) {
assert_eq!(a / b, c);
assert_eq!(
{
let mut x = a;
x /= b;
x
},
c
);
}
test(_1, _1_2, _2);
test(_3_2, _1_2, _1 + _2);
test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
test_assign(_1, 2, _1_2);
}
#[test]
fn test_div_overflow() {
fn test_div_typed_overflow<T>()
where
T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul,
{
let two = T::one() + T::one();
let _3 = T::one() + T::one() + T::one();
let big = T::max_value() / two.clone() / two.clone() * two.clone();
assert_eq!(None, big.clone().checked_mul(&_3.clone()));
let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone());
let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone());
let expected = Ratio::new(T::one(), big / two.clone() * _3.clone());
assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone());
assert_eq!(
Some(expected.clone()),
_1_big.clone().checked_div(&_3_two.clone())
);
assert_eq!(expected, {
let mut tmp = _1_big;
tmp /= _3_two;
tmp
});
let big = T::max_value() / two / _3.clone() * _3.clone() + T::one();
assert_eq!(None, big.clone().checked_mul(&_3.clone()));
let _3_big = Ratio::new(_3.clone(), big.clone());
let expected = Ratio::new(T::one(), big);
assert_eq!(expected, _3_big.clone() / _3.clone());
assert_eq!(expected, {
let mut tmp = _3_big;
tmp /= _3;
tmp
});
}
test_div_typed_overflow::<u8>();
test_div_typed_overflow::<u16>();
test_div_typed_overflow::<u32>();
test_div_typed_overflow::<u64>();
test_div_typed_overflow::<usize>();
test_div_typed_overflow::<u128>();
test_div_typed_overflow::<i8>();
test_div_typed_overflow::<i16>();
test_div_typed_overflow::<i32>();
test_div_typed_overflow::<i64>();
test_div_typed_overflow::<isize>();
test_div_typed_overflow::<i128>();
}
#[test]
fn test_rem() {
fn test(a: Rational64, b: Rational64, c: Rational64) {
assert_eq!(a % b, c);
assert_eq!(
{
let mut x = a;
x %= b;
x
},
c
);
assert_eq!(to_big(a) % to_big(b), to_big(c))
}
fn test_assign(a: Rational64, b: i64, c: Rational64) {
assert_eq!(a % b, c);
assert_eq!(
{
let mut x = a;
x %= b;
x
},
c
);
}
test(_3_2, _1, _1_2);
test(_3_2, _1_2, _0);
test(_5_2, _3_2, _1);
test(_2, _NEG1_2, _0);
test(_1_2, _2, _1_2);
test_assign(_3_2, 1, _1_2);
}
#[test]
fn test_rem_overflow() {
fn test_rem_typed_overflow<T>()
where
T: Integer + Bounded + Clone + Debug + NumAssign,
{
let two = T::one() + T::one();
let max_div2 = T::max_value() / two.clone() * two.clone();
let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2);
let _1_two: Ratio<T> = Ratio::new(T::one(), two);
assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer));
{
let mut tmp: Ratio<T> = _1_two;
tmp %= _1_max;
assert!(T::is_zero(&tmp.numer));
}
}
test_rem_typed_overflow::<u8>();
test_rem_typed_overflow::<u16>();
test_rem_typed_overflow::<u32>();
test_rem_typed_overflow::<u64>();
test_rem_typed_overflow::<usize>();
test_rem_typed_overflow::<u128>();
test_rem_typed_overflow::<i8>();
test_rem_typed_overflow::<i16>();
test_rem_typed_overflow::<i32>();
test_rem_typed_overflow::<i64>();
test_rem_typed_overflow::<isize>();
test_rem_typed_overflow::<i128>();
}
#[test]
fn test_neg() {
fn test(a: Rational64, b: Rational64) {
assert_eq!(-a, b);
assert_eq!(-to_big(a), to_big(b))
}
test(_0, _0);
test(_1_2, _NEG1_2);
test(-_1, _1);
}
#[test]
#[allow(clippy::eq_op)]
fn test_zero() {
assert_eq!(_0 + _0, _0);
assert_eq!(_0 * _0, _0);
assert_eq!(_0 * _1, _0);
assert_eq!(_0 / _NEG1_2, _0);
assert_eq!(_0 - _0, _0);
}
#[test]
#[should_panic]
fn test_div_0() {
let _a = _1 / _0;
}
#[test]
fn test_checked_failures() {
let big = Ratio::new(128u8, 1);
let small = Ratio::new(1, 128u8);
assert_eq!(big.checked_add(&big), None);
assert_eq!(small.checked_sub(&big), None);
assert_eq!(big.checked_mul(&big), None);
assert_eq!(small.checked_div(&big), None);
assert_eq!(_1.checked_div(&_0), None);
}
#[test]
fn test_checked_zeros() {
assert_eq!(_0.checked_add(&_0), Some(_0));
assert_eq!(_0.checked_sub(&_0), Some(_0));
assert_eq!(_0.checked_mul(&_0), Some(_0));
assert_eq!(_0.checked_div(&_0), None);
}
#[test]
fn test_checked_min() {
assert_eq!(_MIN.checked_add(&_MIN), None);
assert_eq!(_MIN.checked_sub(&_MIN), Some(_0));
assert_eq!(_MIN.checked_mul(&_MIN), None);
assert_eq!(_MIN.checked_div(&_MIN), Some(_1));
assert_eq!(_0.checked_add(&_MIN), Some(_MIN));
assert_eq!(_0.checked_sub(&_MIN), None);
assert_eq!(_0.checked_mul(&_MIN), Some(_0));
assert_eq!(_0.checked_div(&_MIN), Some(_0));
assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1));
assert_eq!(_1.checked_sub(&_MIN), None);
assert_eq!(_1.checked_mul(&_MIN), Some(_MIN));
assert_eq!(_1.checked_div(&_MIN), None);
assert_eq!(_MIN.checked_add(&_0), Some(_MIN));
assert_eq!(_MIN.checked_sub(&_0), Some(_MIN));
assert_eq!(_MIN.checked_mul(&_0), Some(_0));
assert_eq!(_MIN.checked_div(&_0), None);
assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1));
assert_eq!(_MIN.checked_sub(&_1), None);
assert_eq!(_MIN.checked_mul(&_1), Some(_MIN));
assert_eq!(_MIN.checked_div(&_1), Some(_MIN));
}
#[test]
fn test_checked_max() {
assert_eq!(_MAX.checked_add(&_MAX), None);
assert_eq!(_MAX.checked_sub(&_MAX), Some(_0));
assert_eq!(_MAX.checked_mul(&_MAX), None);
assert_eq!(_MAX.checked_div(&_MAX), Some(_1));
assert_eq!(_0.checked_add(&_MAX), Some(_MAX));
assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1));
assert_eq!(_0.checked_mul(&_MAX), Some(_0));
assert_eq!(_0.checked_div(&_MAX), Some(_0));
assert_eq!(_1.checked_add(&_MAX), None);
assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1));
assert_eq!(_1.checked_mul(&_MAX), Some(_MAX));
assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip()));
assert_eq!(_MAX.checked_add(&_0), Some(_MAX));
assert_eq!(_MAX.checked_sub(&_0), Some(_MAX));
assert_eq!(_MAX.checked_mul(&_0), Some(_0));
assert_eq!(_MAX.checked_div(&_0), None);
assert_eq!(_MAX.checked_add(&_1), None);
assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1));
assert_eq!(_MAX.checked_mul(&_1), Some(_MAX));
assert_eq!(_MAX.checked_div(&_1), Some(_MAX));
}
#[test]
fn test_checked_min_max() {
assert_eq!(_MIN.checked_add(&_MAX), Some(-_1));
assert_eq!(_MIN.checked_sub(&_MAX), None);
assert_eq!(_MIN.checked_mul(&_MAX), None);
assert_eq!(
_MIN.checked_div(&_MAX),
Some(Ratio::new(_MIN.numer, _MAX.numer))
);
assert_eq!(_MAX.checked_add(&_MIN), Some(-_1));
assert_eq!(_MAX.checked_sub(&_MIN), None);
assert_eq!(_MAX.checked_mul(&_MIN), None);
assert_eq!(_MAX.checked_div(&_MIN), None);
}
}
#[test]
fn test_round() {
assert_eq!(_1_3.ceil(), _1);
assert_eq!(_1_3.floor(), _0);
assert_eq!(_1_3.round(), _0);
assert_eq!(_1_3.trunc(), _0);
assert_eq!(_NEG1_3.ceil(), _0);
assert_eq!(_NEG1_3.floor(), -_1);
assert_eq!(_NEG1_3.round(), _0);
assert_eq!(_NEG1_3.trunc(), _0);
assert_eq!(_2_3.ceil(), _1);
assert_eq!(_2_3.floor(), _0);
assert_eq!(_2_3.round(), _1);
assert_eq!(_2_3.trunc(), _0);
assert_eq!(_NEG2_3.ceil(), _0);
assert_eq!(_NEG2_3.floor(), -_1);
assert_eq!(_NEG2_3.round(), -_1);
assert_eq!(_NEG2_3.trunc(), _0);
assert_eq!(_1_2.ceil(), _1);
assert_eq!(_1_2.floor(), _0);
assert_eq!(_1_2.round(), _1);
assert_eq!(_1_2.trunc(), _0);
assert_eq!(_NEG1_2.ceil(), _0);
assert_eq!(_NEG1_2.floor(), -_1);
assert_eq!(_NEG1_2.round(), -_1);
assert_eq!(_NEG1_2.trunc(), _0);
assert_eq!(_1.ceil(), _1);
assert_eq!(_1.floor(), _1);
assert_eq!(_1.round(), _1);
assert_eq!(_1.trunc(), _1);
let _neg1 = Ratio::from_integer(-1);
let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1);
let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX);
let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1);
let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2);
let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX);
let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2);
let _large_rat7 = Ratio::new(1, i32::MIN + 1);
let _large_rat8 = Ratio::new(1, i32::MAX);
assert_eq!(_large_rat1.round(), One::one());
assert_eq!(_large_rat2.round(), One::one());
assert_eq!(_large_rat3.round(), One::one());
assert_eq!(_large_rat4.round(), One::one());
assert_eq!(_large_rat5.round(), _neg1);
assert_eq!(_large_rat6.round(), _neg1);
assert_eq!(_large_rat7.round(), Zero::zero());
assert_eq!(_large_rat8.round(), Zero::zero());
}
#[test]
fn test_fract() {
assert_eq!(_1.fract(), _0);
assert_eq!(_NEG1_2.fract(), _NEG1_2);
assert_eq!(_1_2.fract(), _1_2);
assert_eq!(_3_2.fract(), _1_2);
}
#[test]
fn test_recip() {
assert_eq!(_1 * _1.recip(), _1);
assert_eq!(_2 * _2.recip(), _1);
assert_eq!(_1_2 * _1_2.recip(), _1);
assert_eq!(_3_2 * _3_2.recip(), _1);
assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
assert_eq!(_3_2.recip(), _2_3);
assert_eq!(_NEG1_2.recip(), _NEG2);
assert_eq!(_NEG1_2.recip().denom(), &1);
}
#[test]
#[should_panic(expected = "division by zero")]
fn test_recip_fail() {
let _a = Ratio::new(0, 1).recip();
}
#[test]
fn test_pow() {
fn test(r: Rational64, e: i32, expected: Rational64) {
assert_eq!(r.pow(e), expected);
assert_eq!(Pow::pow(r, e), expected);
assert_eq!(Pow::pow(r, &e), expected);
assert_eq!(Pow::pow(&r, e), expected);
assert_eq!(Pow::pow(&r, &e), expected);
#[cfg(feature = "num-bigint")]
test_big(r, e, expected);
}
#[cfg(feature = "num-bigint")]
fn test_big(r: Rational64, e: i32, expected: Rational64) {
let r = BigRational::new_raw(r.numer.into(), r.denom.into());
let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into());
assert_eq!((&r).pow(e), expected);
assert_eq!(Pow::pow(r.clone(), e), expected);
assert_eq!(Pow::pow(r.clone(), &e), expected);
assert_eq!(Pow::pow(&r, e), expected);
assert_eq!(Pow::pow(&r, &e), expected);
}
test(_1_2, 2, Ratio::new(1, 4));
test(_1_2, -2, Ratio::new(4, 1));
test(_1, 1, _1);
test(_1, i32::MAX, _1);
test(_1, i32::MIN, _1);
test(_NEG1_2, 2, _1_2.pow(2i32));
test(_NEG1_2, 3, -_1_2.pow(3i32));
test(_3_2, 0, _1);
test(_3_2, -1, _3_2.recip());
test(_3_2, 3, Ratio::new(27, 8));
}
#[test]
#[cfg(feature = "std")]
fn test_to_from_str() {
use std::string::{String, ToString};
fn test(r: Rational64, s: String) {
assert_eq!(FromStr::from_str(&s), Ok(r));
assert_eq!(r.to_string(), s);
}
test(_1, "1".to_string());
test(_0, "0".to_string());
test(_1_2, "1/2".to_string());
test(_3_2, "3/2".to_string());
test(_2, "2".to_string());
test(_NEG1_2, "-1/2".to_string());
}
#[test]
fn test_from_str_fail() {
fn test(s: &str) {
let rational: Result<Rational64, _> = FromStr::from_str(s);
assert!(rational.is_err());
}
let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"];
for &s in xs.iter() {
test(s);
}
}
#[cfg(feature = "num-bigint")]
#[test]
fn test_from_float() {
use num_traits::float::FloatCore;
fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) {
let ratio: BigRational = Ratio::from_float(given).unwrap();
assert_eq!(
ratio,
Ratio::new(
FromStr::from_str(numer).unwrap(),
FromStr::from_str(denom).unwrap()
)
);
}
test(core::f32::consts::PI, ("13176795", "4194304"));
test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
test(
-(2f32.powf(100.)),
("-1267650600228229401496703205376", "1"),
);
test(
1.0 / 2f32.powf(100.),
("1", "1267650600228229401496703205376"),
);
test(684729.48391f32, ("1369459", "2"));
test(-8573.5918555f32, ("-4389679", "512"));
test(
core::f64::consts::PI,
("884279719003555", "281474976710656"),
);
test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
test(
-(2f64.powf(100.)),
("-1267650600228229401496703205376", "1"),
);
test(684729.48391f64, ("367611342500051", "536870912"));
test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
test(
1.0 / 2f64.powf(100.),
("1", "1267650600228229401496703205376"),
);
}
#[cfg(feature = "num-bigint")]
#[test]
fn test_from_float_fail() {
use core::{f32, f64};
assert_eq!(Ratio::from_float(f32::NAN), None);
assert_eq!(Ratio::from_float(f32::INFINITY), None);
assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
assert_eq!(Ratio::from_float(f64::NAN), None);
assert_eq!(Ratio::from_float(f64::INFINITY), None);
assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
}
#[test]
fn test_signed() {
assert_eq!(_NEG1_2.abs(), _1_2);
assert_eq!(_3_2.abs_sub(&_1_2), _1);
assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
assert_eq!(_1_2.signum(), One::one());
assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one());
assert_eq!(_0.signum(), Zero::zero());
assert!(_NEG1_2.is_negative());
assert!(_1_NEG2.is_negative());
assert!(!_NEG1_2.is_positive());
assert!(!_1_NEG2.is_positive());
assert!(_1_2.is_positive());
assert!(_NEG1_NEG2.is_positive());
assert!(!_1_2.is_negative());
assert!(!_NEG1_NEG2.is_negative());
assert!(!_0.is_positive());
assert!(!_0.is_negative());
}
#[test]
#[cfg(feature = "std")]
fn test_hash() {
assert!(crate::hash(&_0) != crate::hash(&_1));
assert!(crate::hash(&_0) != crate::hash(&_3_2));
let a = Rational64::new_raw(4, 2);
let b = Rational64::new_raw(6, 3);
assert_eq!(a, b);
assert_eq!(crate::hash(&a), crate::hash(&b));
let a = Rational64::new_raw(123456789, 1000);
let b = Rational64::new_raw(123456789 * 5, 5000);
assert_eq!(a, b);
assert_eq!(crate::hash(&a), crate::hash(&b));
}
#[test]
fn test_into_pair() {
assert_eq!((0, 1), _0.into());
assert_eq!((-2, 1), _NEG2.into());
assert_eq!((1, -2), _1_NEG2.into());
}
#[test]
fn test_from_pair() {
assert_eq!(_0, Ratio::from((0, 1)));
assert_eq!(_1, Ratio::from((1, 1)));
assert_eq!(_NEG2, Ratio::from((-2, 1)));
assert_eq!(_1_NEG2, Ratio::from((1, -2)));
}
#[test]
fn ratio_iter_sum() {
fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] {
let mut manual_sum = Ratio::new(T::zero(), T::one());
for ratio in slice {
manual_sum = manual_sum + ratio;
}
[manual_sum, slice.iter().sum(), slice.iter().cloned().sum()]
}
let mut nums = [Ratio::new(0, 1); 1000];
for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() {
nums[i] = r;
}
let sums = iter_sums(&nums[..]);
assert_eq!(sums[0], sums[1]);
assert_eq!(sums[0], sums[2]);
}
#[test]
fn ratio_iter_product() {
fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] {
let mut manual_prod = Ratio::new(T::one(), T::one());
for ratio in slice {
manual_prod = manual_prod * ratio;
}
[
manual_prod,
slice.iter().product(),
slice.iter().cloned().product(),
]
}
let mut nums = [Ratio::new(0, 1); 1000];
for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() {
nums[i] = r;
}
let products = iter_products(&nums[..]);
assert_eq!(products[0], products[1]);
assert_eq!(products[0], products[2]);
}
#[test]
fn test_num_zero() {
let zero = Rational64::zero();
assert!(zero.is_zero());
let mut r = Rational64::new(123, 456);
assert!(!r.is_zero());
assert_eq!(r + zero, r);
r.set_zero();
assert!(r.is_zero());
}
#[test]
fn test_num_one() {
let one = Rational64::one();
assert!(one.is_one());
let mut r = Rational64::new(123, 456);
assert!(!r.is_one());
assert_eq!(r * one, r);
r.set_one();
assert!(r.is_one());
}
#[test]
fn test_const() {
const N: Ratio<i32> = Ratio::new_raw(123, 456);
const N_NUMER: &i32 = N.numer();
const N_DENOM: &i32 = N.denom();
assert_eq!(N_NUMER, &123);
assert_eq!(N_DENOM, &456);
let r = N.reduced();
assert_eq!(r.numer(), &(123 / 3));
assert_eq!(r.denom(), &(456 / 3));
}
#[test]
fn test_ratio_to_i64() {
assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap());
assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap());
assert_eq!(None, Rational64::new(-31, 8).to_u64());
}
#[test]
#[cfg(feature = "num-bigint")]
fn test_ratio_to_i128() {
assert_eq!(
1i128 << 70,
Ratio::<i128>::new(1i128 << 77, 1i128 << 7)
.to_i128()
.unwrap()
);
}
#[test]
#[cfg(feature = "num-bigint")]
fn test_big_ratio_to_f64() {
assert_eq!(
BigRational::new(
"1234567890987654321234567890987654321234567890"
.parse()
.unwrap(),
"3".parse().unwrap()
)
.to_f64(),
Some(411522630329218100000000000000000000000000000f64)
);
assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324));
assert_eq!(
BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(),
Some(2.0f64.powi(-50).powi(21))
);
assert_eq!(
BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(),
Some(0.0)
);
assert_eq!(
BigRational::from(BigInt::one() << 1050).to_f64(),
Some(core::f64::INFINITY)
);
assert_eq!(
BigRational::from((-BigInt::one()) << 1050).to_f64(),
Some(core::f64::NEG_INFINITY)
);
assert_eq!(
BigRational::new(
"1234567890987654321234567890".parse().unwrap(),
"987654321234567890987654321".parse().unwrap()
)
.to_f64(),
Some(1.2499999893125f64)
);
assert_eq!(
BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(),
Some(core::f64::INFINITY)
);
assert_eq!(
BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(),
Some(core::f64::NEG_INFINITY)
);
assert_eq!(
BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(),
None
);
}
#[test]
fn test_ratio_to_f64() {
assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64));
assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64));
assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64));
assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64));
assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64));
assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64));
assert_eq!(
Rational64::new((1 << 52) + 1, 1 << 52).to_f64(),
Some(1.0000000000000002f64),
);
assert_eq!(
Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(),
Some(1.0000000000000002f64),
);
assert_eq!(
Ratio::<i32>::new_raw(1, 0).to_f64(),
Some(core::f64::INFINITY)
);
assert_eq!(
Ratio::<i32>::new_raw(-1, 0).to_f64(),
Some(core::f64::NEG_INFINITY)
);
assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None);
}
#[test]
fn test_ldexp() {
use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY};
assert_eq!(ldexp(1.0, 0), 1.0);
assert_eq!(ldexp(1.0, 1), 2.0);
assert_eq!(ldexp(0.0, 1), 0.0);
assert_eq!(ldexp(-0.0, 1), -0.0);
assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5));
assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1));
assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3));
assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4));
assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200));
assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1));
assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP));
assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0);
assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0);
assert_eq!(ldexp(1.0, MAX_EXP), INFINITY);
assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY);
assert_eq!(ldexp(INFINITY, 1), INFINITY);
assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY);
assert!(ldexp(NAN, 1).is_nan());
}
}