1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! Angle (dimensionless quantity).

#[cfg(feature = "std")]
use super::ratio::Ratio;

quantity! {
    /// Angle (dimensionless quantity).
    quantity: Angle; "angle";
    /// Dimension of angle, 1 (dimensionless).
    dimension: ISQ<
        Z0,     // length
        Z0,     // mass
        Z0,     // time
        Z0,     // electric current
        Z0,     // thermodynamic temperature
        Z0,     // amount of substance
        Z0>;    // luminous intensity
    kind: dyn (crate::si::marker::AngleKind);
    units {
        /// SI derived unit of angle. It is the angle subtended at the center of a circle by an
        /// arc that is equal in length to the radius of the circle.
        @radian: 1.0_E0; "rad", "radian", "radians";
        @revolution: 6.283_185_307_179_586_E0; "r", "revolution", "revolutions";
        @degree: 1.745_329_251_994_329_5_E-2; "°", "degree", "degrees";
        @gon: 1.570_796_326_794_896_7_E-2; "gon", "gon", "gons";
        @mil: 9.817_477_E-4; "mil", "mil", "mils";
        @minute: 2.908_882_086_657_216_E-4; "′", "minute", "minutes";
        @second: 4.848_136_811_095_36_E-6; "″", "second", "seconds";
    }
}

#[cfg(feature = "f32")]
impl Angle<crate::si::SI<f32>, f32> {
    /// A half turn, i.e. an angle with a value of π as measured in radians
    pub const HALF_TURN: Self = Self {
        dimension: crate::lib::marker::PhantomData,
        units: crate::lib::marker::PhantomData,
        value: crate::lib::f32::consts::PI,
    };

    /// A full turn, i.e. an angle with a value of 2π as measured in radians
    pub const FULL_TURN: Self = Self {
        dimension: crate::lib::marker::PhantomData,
        units: crate::lib::marker::PhantomData,
        value: 2. * crate::lib::f32::consts::PI,
    };
}

#[cfg(feature = "f64")]
impl Angle<crate::si::SI<f64>, f64> {
    /// A half turn, i.e. an angle with a value of π as measured in radians
    pub const HALF_TURN: Self = Self {
        dimension: crate::lib::marker::PhantomData,
        units: crate::lib::marker::PhantomData,
        value: crate::lib::f64::consts::PI,
    };

    /// A full turn, i.e. an angle with a value of 2π as measured in radians
    pub const FULL_TURN: Self = Self {
        dimension: crate::lib::marker::PhantomData,
        units: crate::lib::marker::PhantomData,
        value: 2. * crate::lib::f64::consts::PI,
    };
}

/// Implementation of various stdlib trigonometric functions
#[cfg(feature = "std")]
impl<U, V> Angle<U, V>
where
    U: crate::si::Units<V> + ?Sized,
    V: crate::num::Float + crate::Conversion<V>,
{
    /// Computes the value of the cosine of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn cos(self) -> Ratio<U, V> {
        self.value.cos().into()
    }

    /// Computes the value of the hyperbolic cosine of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn cosh(self) -> Ratio<U, V> {
        self.value.cosh().into()
    }

    /// Computes the value of the sine of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn sin(self) -> Ratio<U, V> {
        self.value.sin().into()
    }

    /// Computes the value of the hyperbolic sine of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn sinh(self) -> Ratio<U, V> {
        self.value.sinh().into()
    }

    /// Computes the value of both the sine and cosine of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn sin_cos(self) -> (Ratio<U, V>, Ratio<U, V>) {
        let (sin, cos) = self.value.sin_cos();
        (sin.into(), cos.into())
    }

    /// Computes the value of the tangent of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn tan(self) -> Ratio<U, V> {
        self.value.tan().into()
    }

    /// Computes the value of the hyperbolic tangent of the angle.
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn tanh(self) -> Ratio<U, V> {
        self.value.tanh().into()
    }
}

#[cfg(feature = "std")]
impl<D, U, V> crate::si::Quantity<D, U, V>
where
    D: crate::si::Dimension + ?Sized,
    U: crate::si::Units<V> + ?Sized,
    V: crate::num::Float + crate::Conversion<V>,
    radian: crate::Conversion<V, T = V::T>,
{
    /// Computes the four quadrant arctangent of self (y) and other (x).
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline(always)]
    pub fn atan2(self, other: Self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.atan2(other.value))
    }
}

#[cfg(test)]
mod tests {
    storage_types! {
        use crate::lib::f64::consts::PI;
        use crate::num::{FromPrimitive, One};
        use crate::si::angle as a;
        use crate::si::quantities::*;
        use crate::tests::Test;

        #[test]
        fn check_units() {
            Test::assert_eq(&Angle::new::<a::radian>(V::from_f64(2.0 * PI).unwrap()),
                &Angle::new::<a::revolution>(V::one()));
            Test::assert_eq(&Angle::new::<a::degree>(V::from_f64(360.0).unwrap()),
                &Angle::new::<a::revolution>(V::one()));
            Test::assert_approx_eq(&Angle::new::<a::gon>(V::from_f64(400.0).unwrap()),
                &Angle::new::<a::revolution>(V::one()));
            Test::assert_eq(&Angle::new::<a::minute>(V::from_f64(60.0).unwrap()),
                &Angle::new::<a::degree>(V::one()));
            Test::assert_eq(&Angle::new::<a::second>(V::from_f64(60.0 * 60.0).unwrap()),
                &Angle::new::<a::degree>(V::one()));
        }
    }

    #[cfg(feature = "std")]
    mod trig {
        storage_types! {
            types: Float;

            use crate::lib::f64::consts::PI;
            use crate::num::{FromPrimitive, Zero};
            use crate::si::angle as a;
            use crate::si::length as l;
            use crate::si::quantities::*;
            use crate::tests::Test;

            #[test]
            fn sanity() {
                let zero: Angle<V> = Angle::zero();
                let nzero: Angle<V> = -Angle::zero();
                let pi: Angle<V> = Angle::new::<a::radian>(V::from_f64(PI).unwrap());
                let half: Angle<V> = Angle::new::<a::radian>(V::from_f64(PI / 2.0).unwrap());

                Test::assert_approx_eq(&zero.cos().into(), &1.0);
                Test::assert_approx_eq(&nzero.cos().into(), &1.0);

                Test::assert_approx_eq(&pi.cos().into(), &-1.0);
                Test::assert_approx_eq(&half.cos().into(), &0.0);

                Test::assert_approx_eq(&zero.sin().into(), &0.0);
                Test::assert_approx_eq(&nzero.sin().into(), &0.0);

                // Float inaccuracy does not guarantee approximate values
                // In these tests, it diverges slightly over the epsilon value
                //Test::assert_approx_eq(&pi.sin().into(), &0.0);
                //Test::assert_approx_eq(&half.sin().into(), &1.0);

                Test::assert_approx_eq(&zero.tan().into(), &0.0);
                Test::assert_approx_eq(&nzero.tan().into(), &0.0);

                //Test::assert_approx_eq(&pi.tan(), &0.0);
                // Cannot test for PI / 2 equality as it diverges to infinity
                // Float inaccuracy does not guarantee a NAN or INFINITY result
                //let result = half.tan().into();
                //assert!(result == V::nan() || result == V::infinity());

                Test::assert_approx_eq(&zero.cosh().into(), &1.0);
                Test::assert_approx_eq(&nzero.cosh().into(), &1.0);

                Test::assert_approx_eq(&zero.sinh().into(), &0.0);
                Test::assert_approx_eq(&nzero.sinh().into(), &0.0);

                Test::assert_approx_eq(&zero.tanh().into(), &0.0);
                Test::assert_approx_eq(&nzero.tanh().into(), &0.0);
            }

            quickcheck! {
                #[allow(trivial_casts)]
                fn atan2(y: V, x: V) -> bool {
                    Test::eq(&y.atan2(x),
                        &Length::new::<l::meter>(y).atan2(Length::new::<l::meter>(x)).get::<a::radian>())
                }
            }

            #[test]
            fn turns() {
                Test::assert_approx_eq(&Angle::<V>::HALF_TURN.cos().into(), &-1.0);
                Test::assert_approx_eq(&Angle::<V>::FULL_TURN.cos().into(), &1.0);
            }
        }
    }
}