1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//! Thermodynamic temperature (base unit kelvin, K).
//!
//! Thermodynamic temperature has the same dimensions as [temperature
//! interval](../temperature_interval/index.html) but is not directly comparable. Thermodynamic
//! temperature is the absolute measure of temperature and is one of the [base quantities][base] in
//! the [ISQ][isq]. Temperature interval is the measure of relative temperature difference between
//! thermodynamic temperatures.
//!
#![cfg_attr(feature = "f32", doc = " ```rust,compile_fail")]
#![cfg_attr(not(feature = "f32"), doc = " ```rust,ignore")]
//! # use uom::si::{temperature_interval, thermodynamic_temperature};
//! # use uom::si::f32::*;
//! let tt = ThermodynamicTemperature::new::<thermodynamic_temperature::kelvin>(1.0);
//! let ti = TemperatureInterval::new::<temperature_interval::kelvin>(1.0);
//!
//! // error[E0308]: mismatched types
//! let err = tt == ti;
//! ```
//!
//! Additionally, addition and subtraction are not implemented for thermodynamic temperature.
//!
#![cfg_attr(feature = "f32", doc = " ```rust,compile_fail")]
#![cfg_attr(not(feature = "f32"), doc = " ```rust,ignore")]
//! # use uom::si::{temperature_interval, thermodynamic_temperature};
//! # use uom::si::f32::*;
//! let t1 = ThermodynamicTemperature::new::<thermodynamic_temperature::kelvin>(1.0);
//! let t2 = ThermodynamicTemperature::new::<thermodynamic_temperature::kelvin>(1.0);
//!
//! // error[E0308]: mismatched types
//! let err = t1 + t2;
//! ```
//!
//! A temperature interval can be added to or subtracted from a thermodynamic temperature.
//!
#![cfg_attr(all(feature = "si", feature = "f32"), doc = " ```rust")]
#![cfg_attr(not(all(feature = "si", feature = "f32")), doc = " ```rust,ignore")]
//! # use uom::si::{temperature_interval, thermodynamic_temperature};
//! # use uom::si::f32::*;
//! let tt = ThermodynamicTemperature::new::<thermodynamic_temperature::kelvin>(1.0);
//! let ti = TemperatureInterval::new::<temperature_interval::kelvin>(1.0);
//!
//! let result = tt + ti;
//! ```
//!
//! [base]: https://jcgm.bipm.org/vim/en/1.4.html
//! [isq]: https://jcgm.bipm.org/vim/en/1.6.html

use crate::si::temperature_interval::TemperatureInterval;

quantity! {
    /// Thermodynamic temperature (base unit kelvin, K).
    quantity: ThermodynamicTemperature; "thermodynamic temperature";
    /// Dimension of thermodynamic temperature, Th (base unit kelvin, K).
    dimension: ISQ<
        Z0,     // length
        Z0,     // mass
        Z0,     // time
        Z0,     // electric current
        P1,     // thermodynamic temperature
        Z0,     // amount of substance
        Z0>;    // luminous intensity
    kind: dyn (crate::si::marker::TemperatureKind);
    units {
        @yottakelvin: prefix!(yotta); "YK", "yottakelvin", "yottakelvins";
        @zettakelvin: prefix!(zetta); "ZK", "zettakelvin", "zettakelvins";
        @exakelvin: prefix!(exa); "EK", "exakelvin", "exakelvins";
        @petakelvin: prefix!(peta); "PK", "petakelvin", "petakelvins";
        @terakelvin: prefix!(tera); "TK", "terakelvin", "terakelvins";
        @gigakelvin: prefix!(giga); "GK", "gigakelvin", "gigakelvins";
        @megakelvin: prefix!(mega); "MK", "megakelvin", "megakelvins";
        @kilokelvin: prefix!(kilo); "kK", "kilokelvin", "kilokelvins";
        @hectokelvin: prefix!(hecto); "hK", "hectokelvin", "hectokelvins";
        @decakelvin: prefix!(deca); "daK", "decakelvin", "decakelvins";
        /// The kelvin is the SI unit of thermodynamic temperature. It is defined by taking the
        /// fixed numerical value of the Boltzmann constant *k* to be 1.380 649 × 10⁻²³ when
        /// expressed in the unit J K⁻¹, which is equal to kg m² s⁻² K⁻¹, where the kilogram, meter,
        /// and second are defined in terms of *h*, *c*, and ∆*ν*<sub>Cs</sub>.
        @kelvin: prefix!(none); "K", "kelvin", "kelvins";
        @decikelvin: prefix!(deci); "dK", "decikelvin", "decikelvins";
        @centikelvin: prefix!(centi); "cK", "centikelvin", "centikelvins";
        @millikelvin: prefix!(milli); "mK", "millikelvin", "millikelvins";
        @microkelvin: prefix!(micro); "µK", "microkelvin", "microkelvins";
        @nanokelvin: prefix!(nano); "nK", "nanokelvin", "nanokelvins";
        @picokelvin: prefix!(pico); "pK", "picokelvin", "picokelvins";
        @femtokelvin: prefix!(femto); "fK", "femtokelvin", "femtokelvins";
        @attokelvin: prefix!(atto); "aK", "attokelvin", "attokelvins";
        @zeptokelvin: prefix!(zepto); "zK", "zeptokelvin", "zeptokelvins";
        @yoctokelvin: prefix!(yocto); "yK", "yoctokelvin", "yoctokelvins";

        @degree_celsius: 1.0_E0, 273.15_E0; "°C", "degree Celsius", "degrees Celsius";
        @degree_fahrenheit: 5.0_E0 / 9.0_E0, 459.67_E0; "°F", "degree Fahrenheit",
            "degrees Fahrenheit";
        @degree_rankine: 5.0_E0 / 9.0_E0; "°R", "degree Rankine", "degrees Rankine";
    }
}

#[doc(hidden)]
macro_rules! impl_ops {
    (
        $AddSubTrait:ident, $addsub_fun:ident, $addsub_op:tt,
        $AddSubAssignTrait:ident, $addsubassign_fun:ident, $addsubassign_op:tt,
        $AddSubAlias:ident
    ) => {
        #[cfg(feature = "autoconvert")]
        impl<Ul, Ur, V> $crate::lib::ops::$AddSubTrait<TemperatureInterval<Ur, V>>
            for ThermodynamicTemperature<Ul, V>
        where
            Ul: super::Units<V> + ?Sized,
            Ur: super::Units<V> + ?Sized,
            V: $crate::num::Num + $crate::Conversion<V>,
        {
            type Output = ThermodynamicTemperature<Ul, V>;

            #[inline(always)]
            fn $addsub_fun(self, rhs: TemperatureInterval<Ur, V>) -> Self::Output {
                super::Quantity {
                    dimension: $crate::lib::marker::PhantomData,
                    units: $crate::lib::marker::PhantomData,
                    value: self.value
                        $addsub_op super::change_base::<Dimension, Ul, Ur, V>(&rhs.value),
                }
            }
        }

        #[cfg(not(feature = "autoconvert"))]
        impl<U, V> $crate::lib::ops::$AddSubTrait<TemperatureInterval<U, V>>
            for ThermodynamicTemperature<U, V>
        where
            U: super::Units<V> + ?Sized,
            V: $crate::num::Num + $crate::Conversion<V>,
        {
            type Output = ThermodynamicTemperature<U, V>;

            #[inline(always)]
            fn $addsub_fun(self, rhs: TemperatureInterval<U, V>) -> Self::Output {
                super::Quantity {
                    dimension: $crate::lib::marker::PhantomData,
                    units: $crate::lib::marker::PhantomData,
                    value: self.value $addsub_op rhs.value,
                }
            }
        }

        #[cfg(feature = "autoconvert")]
        impl<Ul, Ur, V> $crate::lib::ops::$AddSubAssignTrait<TemperatureInterval<Ur, V>>
            for ThermodynamicTemperature<Ul, V>
        where
            Ul: super::Units<V> + ?Sized,
            Ur: super::Units<V> + ?Sized,
            V: $crate::num::Num + $crate::Conversion<V> + $crate::lib::ops::$AddSubAssignTrait<V>,
        {
            #[inline(always)]
            fn $addsubassign_fun(&mut self, rhs: TemperatureInterval<Ur, V>) {
                self.value $addsubassign_op super::change_base::<Dimension, Ul, Ur, V>(&rhs.value);
            }
        }

        #[cfg(not(feature = "autoconvert"))]
        impl<U, V> $crate::lib::ops::$AddSubAssignTrait<TemperatureInterval<U, V>>
            for ThermodynamicTemperature<U, V>
        where
            U: super::Units<V> + ?Sized,
            V: $crate::num::Num + $crate::Conversion<V> + $crate::lib::ops::$AddSubAssignTrait<V>,
        {
            #[inline(always)]
            fn $addsubassign_fun(&mut self, rhs: TemperatureInterval<U, V>) {
                self.value $addsubassign_op rhs.value;
            }
        }
    };
}

impl_ops!(Add, add, +, AddAssign, add_assign, +=, Sum);
impl_ops!(Sub, sub, -, SubAssign, sub_assign, -=, Diff);

#[cfg(test)]
mod tests {
    use crate::si::quantities::*;
    use crate::si::temperature_interval as ti;
    use crate::si::thermodynamic_temperature as tt;

    storage_types! {
        use crate::tests::*;
        use super::*;

        quickcheck! {
            #[allow(trivial_casts)]
            fn add(l: A<V>, r: A<V>) -> bool {
                Test::eq(&ThermodynamicTemperature::<V>::new::<tt::kelvin>(&*l + &*r),
                    &(ThermodynamicTemperature::<V>::new::<tt::kelvin>((*l).clone())
                        + TemperatureInterval::<V>::new::<ti::kelvin>((*r).clone())))
            }

            #[allow(trivial_casts)]
            fn sub(l: A<V>, r: A<V>) -> bool {
                Test::eq(&ThermodynamicTemperature::<V>::new::<tt::kelvin>(&*l - &*r),
                    &(ThermodynamicTemperature::<V>::new::<tt::kelvin>((*l).clone())
                        - TemperatureInterval::<V>::new::<ti::kelvin>((*r).clone())))
            }
        }
    }

    mod non_big {
        storage_types! {
            types: PrimInt, Rational, Rational32, Rational64, Float;

            use crate::tests::*;
            use super::super::*;

            quickcheck! {
                #[allow(trivial_casts)]
                fn add_assign(l: A<V>, r: A<V>) -> bool {
                    let mut f = *l;
                    let mut v = ThermodynamicTemperature::<V>::new::<tt::kelvin>(*l);

                    f += *r;
                    v += TemperatureInterval::<V>::new::<ti::kelvin>(*r);

                    Test::approx_eq(&ThermodynamicTemperature::<V>::new::<tt::kelvin>(f), &v)
                }

                #[allow(trivial_casts)]
                fn sub_assign(l: A<V>, r: A<V>) -> bool {
                    let mut f = *l;
                    let mut v = ThermodynamicTemperature::<V>::new::<tt::kelvin>(*l);

                    f -= *r;
                    v -= TemperatureInterval::<V>::new::<ti::kelvin>(*r);

                    Test::approx_eq(&ThermodynamicTemperature::<V>::new::<tt::kelvin>(f), &v)
                }
            }
        }
    }
}